Editing Weather Modeling

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 2: Line 2:
 
*[http://www.wrf-model.org/index.php WRF] The Weather Research and Forecasting (WRF) Model is a next-generation mesocale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs. It features multiple dynamical cores, a 3-dimensional variational (3DVAR) data assimilation system, and a software architecture allowing for computational parallelism and system extensibility. WRF is suitable for a broad spectrum of applications across scales ranging from meters to thousands of kilometers.
 
*[http://www.wrf-model.org/index.php WRF] The Weather Research and Forecasting (WRF) Model is a next-generation mesocale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs. It features multiple dynamical cores, a 3-dimensional variational (3DVAR) data assimilation system, and a software architecture allowing for computational parallelism and system extensibility. WRF is suitable for a broad spectrum of applications across scales ranging from meters to thousands of kilometers.
 
*[http://climate.lanl.gov/Models/POP/ POP] (Parallel Ocean Program) is an ocean circulation model derived from earlier models of Bryan, Cox, Semtner and Chervin in which depth is used as the vertical coordinate. The model solves the three-dimensional primitive equations for fluid motions on the sphere under hydrostatic and Boussinesq approximations. Spatial derivatives are computed using finite-difference discretizations which are formulated to handle any generalized orthogonal grid on a sphere, including dipole and tripole grids which shift the North Pole singularity into land masses to avoid time step constraints due to grid convergence.
 
*[http://climate.lanl.gov/Models/POP/ POP] (Parallel Ocean Program) is an ocean circulation model derived from earlier models of Bryan, Cox, Semtner and Chervin in which depth is used as the vertical coordinate. The model solves the three-dimensional primitive equations for fluid motions on the sphere under hydrostatic and Boussinesq approximations. Spatial derivatives are computed using finite-difference discretizations which are formulated to handle any generalized orthogonal grid on a sphere, including dipole and tripole grids which shift the North Pole singularity into land masses to avoid time step constraints due to grid convergence.
*[http://mom-ocean.org/web MOM] (The Modular Ocean Model) is a numerical ocean model based on the hydrostatic primitive equations. MOM development is led by scientists at NOAA/GFDL in collaboration with scientists worldwide. Version 5 of MOM (MOM5) is an open source project released under the GPL license.
 

Please note that all contributions to Cluster Documentation Project are considered to be released under the Attribution-NonCommercial-ShareAlike 2.5 (see Cluster Documentation Project:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)