Editing Molecular Modeling

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 5: Line 5:
 
*[http://www.scripps.edu/mb/olson/doc/autodock/ AutoDock] is a suite of automated docking tools. It is designed to predict how small molecules, such as substrates or drug candidates, bind to a receptor of known 3D structure. AutoDock actually consists of two main programs: AutoDock performs the docking of the ligand to a set of grids describing the target protein; AutoGrid re-calculates these grids. In addition to using them for docking, the atomic affinity grids can be visualised. This can help, for example, to guide organic synthetic chemists design better binders.
 
*[http://www.scripps.edu/mb/olson/doc/autodock/ AutoDock] is a suite of automated docking tools. It is designed to predict how small molecules, such as substrates or drug candidates, bind to a receptor of known 3D structure. AutoDock actually consists of two main programs: AutoDock performs the docking of the ligand to a set of grids describing the target protein; AutoGrid re-calculates these grids. In addition to using them for docking, the atomic affinity grids can be visualised. This can help, for example, to guide organic synthetic chemists design better binders.
 
*[http://lammps.sandia.gov/ LAMMPS] LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse-grained systems using a variety of force fields and boundary conditions. LAMMPS runs efficiently on single-processor desktop or laptop machines, but is designed for parallel computers. It will run on any parallel machine that compiles C++ and supports the MPI message-passing library. This includes distributed- or shared-memory parallel machines and Beowulf-style clusters.
 
*[http://lammps.sandia.gov/ LAMMPS] LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse-grained systems using a variety of force fields and boundary conditions. LAMMPS runs efficiently on single-processor desktop or laptop machines, but is designed for parallel computers. It will run on any parallel machine that compiles C++ and supports the MPI message-passing library. This includes distributed- or shared-memory parallel machines and Beowulf-style clusters.
*[http://www.cpmd.org/ CPMD] is a parallel plane wave / pseudopotential implementation of Density Functional Theory, particularly designed for ab-initio molecular dynamics.
 
*[http://cp2k.berlios.de/ CP2K] is a freely available (GPL) program, written in Fortran 95, to perform atomistic and molecular simulations of solid state, liquid, molecular and biological systems. It provides a general framework for different methods such as e.g. density functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW), and classical pair and many-body potentials.
 

Please note that all contributions to Cluster Documentation Project are considered to be released under the Attribution-NonCommercial-ShareAlike 2.5 (see Cluster Documentation Project:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)