Editing Electronic Structure/Quantum Chemistry

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 11: Line 11:
 
*[http://www.deisa.eu/science/benchmarking/codes/bqcd BQCD] (Berlin Quantum ChromoDynamics program) is a hybrid Monte-Carlo code that simulates Quantum Chromodynamics with dynamical standard Wilson fermions. The computations take place on a four-dimensional regular grid with periodic boundary conditions. The kernel of the program is a standard conjugate gradient solver with even/odd pre-conditioning.
 
*[http://www.deisa.eu/science/benchmarking/codes/bqcd BQCD] (Berlin Quantum ChromoDynamics program) is a hybrid Monte-Carlo code that simulates Quantum Chromodynamics with dynamical standard Wilson fermions. The computations take place on a four-dimensional regular grid with periodic boundary conditions. The kernel of the program is a standard conjugate gradient solver with even/odd pre-conditioning.
 
*[http://slater.chemie.uni-mainz.de/cfour/ CFOUR] (Coupled-Cluster techniques for Computational Chemistry) is a program package for performing high-level quantum chemical calculations on atoms and molecules. The major strength of the program suite is its rather sophisticated arsenal of high-level ab initio methods for the calculation of atomic and molecular properties. Virtually all approaches based on Møller-Plesset (MP) perturbation theory and the coupled-cluster approximation (CC) are available; most of these have complementary analytic derivative approaches within the package as well.
 
*[http://slater.chemie.uni-mainz.de/cfour/ CFOUR] (Coupled-Cluster techniques for Computational Chemistry) is a program package for performing high-level quantum chemical calculations on atoms and molecules. The major strength of the program suite is its rather sophisticated arsenal of high-level ab initio methods for the calculation of atomic and molecular properties. Virtually all approaches based on Møller-Plesset (MP) perturbation theory and the coupled-cluster approximation (CC) are available; most of these have complementary analytic derivative approaches within the package as well.
 
See also [http://en.wikipedia.org/wiki/Quantum_chemistry_computer_programs List of quantum chemistry and solid-state physics software] in Wikipedia.
 

Please note that all contributions to Cluster Documentation Project are considered to be released under the Attribution-NonCommercial-ShareAlike 2.5 (see Cluster Documentation Project:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)