Lapack testing problems

Katrin katrinp at imit.kth.se
Mon Jan 13 04:12:11 EST 2003


Hello,
running the test suite for LAPACK, there where some errors in the *.out files.
Can anyone help me?

I used the g77 compiler with the following options
OPTS = -funroll-all-loops -fno-f2c -O3 -fno-emulate-complex
on Madrake Linux.

There where errors in ssep.out and dsep.out and in cgg.out and zgg.out, which I
don't find reported anywhere, and the expected errors in all *gd.out .
Furthermore I wonder wether there is something wrong with the *bal.out,
*bak.out, *gbal.out and *gbak.out . They look like that (except sbal and cbal):
.. test output of DGEBAK 
.. value of largest test error = 0.160E+01
example number where info is not zero = 0
example number having largest error = 7
number of examples where info is not 0 = 0
total number of examples tested = 7
End of tests Total time used = 0.01 seconds

.. test output of DGGBAK ..
value of largest test error = 0.524E+00
example number where DGGBAL info is not 0 = 0
example number where DGGBAK(L) info is not 0 = 0
example number where DGGBAK(R) info is not 0 = 0
example number having largest error = 5
number of examples where info is not 0 = 0
total number of examples tested = 8
End of tests Total time used = 0.01 seconds

Here is ssep.out and csep.out:

Tests of the Symmetric Eigenvalue Problem routines

LAPACK VERSION 3.0, released June 30, 1999 

The following parameter values will be used:
M: 0 1 2 3 5 20
N: 0 1 2 3 5 20
NB: 1 3 3 3 10
NBMIN: 2 2 2 2 2
NX: 1 0 5 9 1

Relative machine underflow is taken to be 0.117549E-37
Relative machine overflow is taken to be 0.340282E+39
Relative machine precision is taken to be 0.596046E-07

Routines pass computational tests if test ratio is less than 50.00


SST routines passed the tests of the error exits (147 tests done)


SEP: NB = 1, NBMIN = 2, NX = 1

All tests for SST passed the threshold ( 4662 tests run)

All tests for SST drivers passed the threshold ( 14256 tests run)


SEP: NB = 3, NBMIN = 2, NX = 0

All tests for SST passed the threshold ( 4662 tests run)

All tests for SST drivers passed the threshold ( 14256 tests run)


SEP: NB = 3, NBMIN = 2, NX = 5

SST -- Real Symmetric eigenvalue problem
Matrix types (see SCHKST for details): 

Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Symmetric Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
16=Positive definite, evenly spaced eigenvalues
17=Positive definite, geometrically spaced eigenvlaues
18=Positive definite, clustered eigenvalues
19=Positive definite, small evenly spaced eigenvalues
20=Positive definite, large evenly spaced eigenvalues
21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues

Test performed: see SCHKST for details.

N= 20, seed=2989,1119,3793,1781, type 9, test(36)= 62.7 
SST: 1 out of 4662 tests failed to pass the threshold

All tests for SST drivers passed the threshold ( 14256 tests run)


SEP: NB = 3, NBMIN = 2, NX = 9

SST -- Real Symmetric eigenvalue problem
Matrix types (see SCHKST for details): 

Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Symmetric Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
16=Positive definite, evenly spaced eigenvalues
17=Positive definite, geometrically spaced eigenvlaues
18=Positive definite, clustered eigenvalues
19=Positive definite, small evenly spaced eigenvalues
20=Positive definite, large evenly spaced eigenvalues
21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues

Test performed: see SCHKST for details.

N= 20, seed= 443,2933, 429,1581, type 9, test(35)= 0.357E+05
N= 20, seed= 443,2933, 429,1581, type 9, test(36)= 0.121E+07
SST: 2 out of 4662 tests failed to pass the threshold

SST -- Real Symmetric eigenvalue problem
Matrix types (see xDRVST for details): 

Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Symmetric Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.

Tests performed: See sdrvst.f
Matrix order= 20, type= 9, seed=3966,3411,3597,2265, result 72 is 63.60
SST drivers: 1 out of 14256 tests failed to pass the threshold


SEP: NB = 10, NBMIN = 2, NX = 1

All tests for SST passed the threshold ( 4662 tests run)

All tests for SST drivers passed the threshold ( 14256 tests run)


End of tests
Total time used = 2.65 seconds


______________________________________________________
Tests of the Hermitian Eigenvalue Problem routines

LAPACK VERSION 3.0, released June 30, 1999 

The following parameter values will be used:
M: 0 1 2 3 5 20
N: 0 1 2 3 5 20
NB: 1 3 3 3 10
NBMIN: 2 2 2 2 2
NX: 1 0 5 9 1

Relative machine underflow is taken to be 0.117549E-37
Relative machine overflow is taken to be 0.340282E+39
Relative machine precision is taken to be 0.596046E-07

Routines pass computational tests if test ratio is less than 50.00


CST routines passed the tests of the error exits (114 tests done)


SEP: NB = 1, NBMIN = 2, NX = 1

All tests for CST passed the threshold ( 4662 tests run)

All tests for CST drivers passed the threshold ( 11664 tests run)


SEP: NB = 3, NBMIN = 2, NX = 0

All tests for CST passed the threshold ( 4662 tests run)

All tests for CST drivers passed the threshold ( 11664 tests run)


SEP: NB = 3, NBMIN = 2, NX = 5

All tests for CST passed the threshold ( 4662 tests run)

All tests for CST drivers passed the threshold ( 11664 tests run)


SEP: NB = 3, NBMIN = 2, NX = 9

CST -- Complex Hermitian eigenvalue problem
Matrix types (see CCHKST for details): 

Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Hermitian Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
16=Positive definite, evenly spaced eigenvalues
17=Positive definite, geometrically spaced eigenvlaues
18=Positive definite, clustered eigenvalues
19=Positive definite, small evenly spaced eigenvalues
20=Positive definite, large evenly spaced eigenvalues
21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues

Test performed: see CCHKST for details.

Matrix order= 20, type= 9, seed=1052,3651,3662,3633, result 36 is 1010.26
CST: 1 out of 4662 tests failed to pass the threshold

All tests for CST drivers passed the threshold ( 11664 tests run)


SEP: NB = 10, NBMIN = 2, NX = 1

CST -- Complex Hermitian eigenvalue problem
Matrix types (see CCHKST for details): 

Special Matrices:
1=Zero matrix. 5=Diagonal: clustered entries.
2=Identity matrix. 6=Diagonal: large, evenly spaced.
3=Diagonal: evenly spaced entries. 7=Diagonal: small, evenly spaced.
4=Diagonal: geometr. spaced entries.
Dense Hermitian Matrices:
8=Evenly spaced eigenvals. 12=Small, evenly spaced eigenvals.
9=Geometrically spaced eigenvals. 13=Matrix with random O(1) entries.
10=Clustered eigenvalues. 14=Matrix with large random entries.
11=Large, evenly spaced eigenvals. 15=Matrix with small random entries.
16=Positive definite, evenly spaced eigenvalues
17=Positive definite, geometrically spaced eigenvlaues
18=Positive definite, clustered eigenvalues
19=Positive definite, small evenly spaced eigenvalues
20=Positive definite, large evenly spaced eigenvalues
21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues

Test performed: see CCHKST for details.

Matrix order= 20, type= 9, seed= 542,2554, 421,3281, result 36 is 63.94
CST: 1 out of 4662 tests failed to pass the threshold

All tests for CST drivers passed the threshold ( 11664 tests run)


End of tests
Total time used = 4.09 seconds
_______________________________________________________

This is cgg.out:

Tests of the Generalized Nonsymmetric Eigenvalue Problem routines

LAPACK VERSION 3.0, released June 30, 1999 

The following parameter values will be used:
M: 0 1 2 3 5 10 16
N: 0 1 2 3 5 10 16
NB: 1 1 2 2
NBMIN: 40 40 2 2
NS: 2 4 2 4
MAXB: 40 40 2 2
NBCOL: 40 40 2 2

Relative machine underflow is taken to be 0.117549E-37
Relative machine overflow is taken to be 0.340282E+39
Relative machine precision is taken to be 0.596046E-07

Routines pass computational tests if test ratio is less than 20.00


CGG routines passed the tests of the error exits ( 27 tests done)


CGG: NB = 1, NBMIN = 40, NS = 2, MAXB = 40, NBCOL = 40
CCHKGG: CHGEQZ(V) returned INFO= 5.
N= 5, JTYPE= 17, ISEED=( 3150, 3277, 3584, 2597)
CGG -- Complex Generalized eigenvalue problem
Matrix types (see CCHKGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (H is Hessenberg, S is Schur, B, T, P are triangular,
U, V, Q, and Z are unitary, l and r are the
appropriate left and right eigenvectors, resp., a is
alpha, b is beta, and * means conjugate transpose.)
1 = | A - U H V* | / ( |A| n ulp ) 2 = | B - U T V* | / ( |B| n ulp )
3 = | I - UU* | / ( n ulp ) 4 = | I - VV* | / ( n ulp )
5 = | H - Q S Z* | / ( |H| n ulp ) 6 = | T - Q P Z* | / ( |T| n ulp )
7 = | I - QQ* | / ( n ulp ) 8 = | I - ZZ* | / ( n ulp )
9 = max | ( b S - a P )* l | / const. 10 = max | ( b H - a T )* l | / const.
11= max | ( b S - a P ) r | / const. 12 = max | ( b H - a T ) r | / const.

Matrix order= 5, type=17, seed=3150,3277,3584,2597, result 5 is 8.389E+06
Matrix order= 5, type=18, seed=1198,3649,2662,3957, result 5 is 4824.82
Matrix order= 5, type=18, seed=1198,3649,2662,3957, result 12 is 9169.87
CCHKGG: CHGEQZ(E) returned INFO= 5.
N= 5, JTYPE= 20, ISEED=( 3632, 142, 2005, 1877)
Matrix order= 5, type=20, seed=3632, 142,2005,1877, result 5 is 8.389E+06
Matrix order= 5, type=21, seed=2406,3874, 631,3781, result 5 is 65.66
Matrix order= 5, type=21, seed=2406,3874, 631,3781, result 12 is 120.31
Matrix order= 5, type=22, seed=2925,1715,1088,2417, result 5 is 2.056E+05
CCHKGG: CHGEQZ(E) returned INFO= 3.
N= 5, JTYPE= 23, ISEED=( 3973, 3739, 2792, 1873)
Matrix order= 5, type=23, seed=3973,3739,2792,1873, result 5 is 8.389E+06
CCHKGG: CHGEQZ(V) returned INFO= 3.
N= 5, JTYPE= 24, ISEED=( 871, 2053, 3644, 2353)
Matrix order= 5, type=24, seed= 871,2053,3644,2353, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 10.
N= 10, JTYPE= 17, ISEED=( 3112, 827, 1844, 257)
Matrix order= 10, type=17, seed=3112, 827,1844, 257, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 10.
N= 10, JTYPE= 18, ISEED=( 2548, 3287, 2863, 3857)
Matrix order= 10, type=18, seed=2548,3287,2863,3857, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 10.
N= 10, JTYPE= 21, ISEED=( 88, 1442, 3924, 2385)
Matrix order= 10, type=21, seed= 88,1442,3924,2385, result 5 is 8.389E+06
CCHKGG: CHGEQZ(V) returned INFO= 8.
N= 10, JTYPE= 22, ISEED=( 3978, 339, 1822, 3785)
Matrix order= 10, type=22, seed=3978, 339,1822,3785, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 7.
N= 10, JTYPE= 23, ISEED=( 2627, 1986, 1036, 2129)
Matrix order= 10, type=23, seed=2627,1986,1036,2129, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 8.
N= 10, JTYPE= 25, ISEED=( 414, 1096, 1470, 33)
Matrix order= 10, type=25, seed= 414,1096,1470, 33, result 5 is 8.389E+06
CCHKGG: CHGEQZ(V) returned INFO= 9.
N= 10, JTYPE= 26, ISEED=( 91, 310, 3611, 617)
Matrix order= 10, type=26, seed= 91, 310,3611, 617, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 15.
N= 16, JTYPE= 17, ISEED=( 842, 70, 3499, 1241)
Matrix order= 16, type=17, seed= 842, 70,3499,1241, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 4.
N= 16, JTYPE= 18, ISEED=( 2005, 3192, 2302, 2249)
Matrix order= 16, type=18, seed=2005,3192,2302,2249, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 8.
N= 16, JTYPE= 19, ISEED=( 3742, 1684, 3425, 2249)
Matrix order= 16, type=19, seed=3742,1684,3425,2249, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 13.
N= 16, JTYPE= 20, ISEED=( 2269, 2610, 452, 2249)
Matrix order= 16, type=20, seed=2269,2610, 452,2249, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 11.
N= 16, JTYPE= 21, ISEED=( 1246, 1872, 1575, 2249)
Matrix order= 16, type=21, seed=1246,1872,1575,2249, result 5 is 8.389E+06
CCHKGG: CHGEQZ(V) returned INFO= 13.
N= 16, JTYPE= 22, ISEED=( 2702, 1183, 3479, 249)
Matrix order= 16, type=22, seed=2702,1183,3479, 249, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 14.
N= 16, JTYPE= 23, ISEED=( 1518, 558, 1661, 3537)
Matrix order= 16, type=23, seed=1518, 558,1661,3537, result 5 is 8.389E+06
CCHKGG: CHGEQZ(V) returned INFO= 15.
N= 16, JTYPE= 24, ISEED=( 280, 4055, 3020, 745)
Matrix order= 16, type=24, seed= 280,4055,3020, 745, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 12.
N= 16, JTYPE= 25, ISEED=( 2432, 2576, 2044, 1601)
Matrix order= 16, type=25, seed=2432,2576,2044,1601, result 5 is 8.389E+06
Matrix order= 16, type=26, seed=1851,1924,3217,3545, result 5 is 360.81
Matrix order= 16, type=26, seed=1851,1924,3217,3545, result 10 is 365.51
Matrix order= 16, type=26, seed=1851,1924,3217,3545, result 12 is 1130.45
CGG: 28 out of 2044 tests failed to pass the threshold
*** Error code from CCHKGG = 12

CGG -- Complex Generalized eigenvalue problem driver
Matrix types (see CDRVGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (S is Schur, T is triangular, Q and Z are unitary,
l and r are the appropriate left and right
eigenvectors, resp., a is alpha, b is beta, and
* means conjugate transpose.)
1 = | A - Q S Z* | / ( |A| n ulp ) 2 = | B - Q T Z* | / ( |B| n ulp )
3 = | I - QQ* | / ( n ulp ) 4 = | I - ZZ* | / ( n ulp )
5 = difference between (alpha,beta) and diagonals of (S,T)
6 = max | ( b A - a B )* l | / const. 7 = max | ( b A - a B ) r | / const.

Matrix order= 5, type=19, seed=1473,2247,3104,3869, result 1 is 1.600E+05
Matrix order= 5, type=23, seed= 98, 522, 225, 169, result 1 is 1.760E+05
Matrix order= 5, type=25, seed=1468,2085,3970, 617, result 1 is 1.063E+05
CDRVGG: CGEGV returned INFO= 6.
N= 10, JTYPE= 17, ISEED=( 1231, 2336, 2198, 1753)
Matrix order= 10, type=17, seed=1231,2336,2198,1753, result 1 is 1.327E+05
Matrix order= 10, type=17, seed=1231,2336,2198,1753, result 6 is 8.389E+06
CDRVGG: CGEGS returned INFO= 9.
N= 10, JTYPE= 18, ISEED=( 322, 287, 1477, 617)
Matrix order= 10, type=18, seed= 322, 287,1477, 617, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 8.
N= 10, JTYPE= 19, ISEED=( 2152, 695, 3327, 3369)
Matrix order= 10, type=19, seed=2152, 695,3327,3369, result 1 is 8.389E+06
CDRVGG: CGEGV returned INFO= 6.
N= 10, JTYPE= 21, ISEED=( 634, 2449, 1576, 681)
Matrix order= 10, type=21, seed= 634,2449,1576, 681, result 6 is 8.389E+06
CDRVGG: CGEGS returned INFO= 6.
N= 10, JTYPE= 22, ISEED=( 3505, 965, 2045, 3425)
Matrix order= 10, type=22, seed=3505, 965,2045,3425, result 1 is 8.389E+06
CDRVGG: CGEGV returned INFO= 8.
N= 10, JTYPE= 23, ISEED=( 2977, 2947, 2370, 2473)
Matrix order= 10, type=23, seed=2977,2947,2370,2473, result 6 is 8.389E+06
CDRVGG: CGEGV returned INFO= 5.
N= 10, JTYPE= 24, ISEED=( 635, 516, 3095, 561)
Matrix order= 10, type=24, seed= 635, 516,3095, 561, result 1 is 9838.50
Matrix order= 10, type=24, seed= 635, 516,3095, 561, result 6 is 8.389E+06
CDRVGG: CGEGS returned INFO= 5.
N= 10, JTYPE= 25, ISEED=( 3531, 3816, 3406, 2297)
Matrix order= 10, type=25, seed=3531,3816,3406,2297, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 11.
N= 16, JTYPE= 17, ISEED=( 75, 3661, 2089, 241)
Matrix order= 16, type=17, seed= 75,3661,2089, 241, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 12.
N= 16, JTYPE= 18, ISEED=( 2670, 132, 428, 1889)
Matrix order= 16, type=18, seed=2670, 132, 428,1889, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 7.
N= 16, JTYPE= 19, ISEED=( 864, 3448, 151, 1889)
Matrix order= 16, type=19, seed= 864,3448, 151,1889, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 3.
N= 16, JTYPE= 20, ISEED=( 3127, 1476, 3970, 1889)
Matrix order= 16, type=20, seed=3127,1476,3970,1889, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 16.
N= 16, JTYPE= 21, ISEED=( 388, 2410, 3693, 1889)
Matrix order= 16, type=21, seed= 388,2410,3693,1889, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 8.
N= 16, JTYPE= 22, ISEED=( 1176, 413, 1114, 2065)
Matrix order= 16, type=22, seed=1176, 413,1114,2065, result 1 is 8.389E+06
CDRVGG: CGEGV returned INFO= 8.
N= 16, JTYPE= 23, ISEED=( 965, 2985, 718, 809)
Matrix order= 16, type=23, seed= 965,2985, 718, 809, result 6 is 8.389E+06
CDRVGG: CGEGS returned INFO= 9.
N= 16, JTYPE= 24, ISEED=( 2844, 667, 4020, 3201)
Matrix order= 16, type=24, seed=2844, 667,4020,3201, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 11.
N= 16, JTYPE= 25, ISEED=( 310, 3008, 2985, 2585)
Matrix order= 16, type=25, seed= 310,3008,2985,2585, result 1 is 8.389E+06
CGG drivers: 22 out of 1197 tests failed to pass the threshold
*** Error code from CDRVGG = 11


CGG: NB = 1, NBMIN = 40, NS = 4, MAXB = 40, NBCOL = 40
CCHKGG: CHGEQZ(E) returned INFO= 4.
N= 5, JTYPE= 17, ISEED=( 4031, 2858, 463, 469)
CGG -- Complex Generalized eigenvalue problem
Matrix types (see CCHKGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (H is Hessenberg, S is Schur, B, T, P are triangular,
U, V, Q, and Z are unitary, l and r are the
appropriate left and right eigenvectors, resp., a is
alpha, b is beta, and * means conjugate transpose.)
1 = | A - U H V* | / ( |A| n ulp ) 2 = | B - U T V* | / ( |B| n ulp )
3 = | I - UU* | / ( n ulp ) 4 = | I - VV* | / ( n ulp )
5 = | H - Q S Z* | / ( |H| n ulp ) 6 = | T - Q P Z* | / ( |T| n ulp )
7 = | I - QQ* | / ( n ulp ) 8 = | I - ZZ* | / ( n ulp )
9 = max | ( b S - a P )* l | / const. 10 = max | ( b H - a T )* l | / const.
11= max | ( b S - a P ) r | / const. 12 = max | ( b H - a T ) r | / const.

Matrix order= 5, type=17, seed=4031,2858, 463, 469, result 5 is 8.389E+06
Matrix order= 5, type=18, seed=1497, 865,2490, 549, result 5 is 2743.44
Matrix order= 5, type=18, seed=1497, 865,2490, 549, result 12 is 7313.46
CCHKGG: CHGEQZ(E) returned INFO= 3.
N= 5, JTYPE= 20, ISEED=( 1033, 1636, 3260, 3077)
Matrix order= 5, type=20, seed=1033,1636,3260,3077, result 5 is 8.389E+06
Matrix order= 5, type=21, seed=2577,1945,4069,3189, result 5 is 4.013E+04
Matrix order= 5, type=21, seed=2577,1945,4069,3189, result 12 is 1.255E+05
Matrix order= 5, type=22, seed= 895,2750,2345,1121, result 5 is 6.664E+04
Matrix order= 5, type=22, seed= 895,2750,2345,1121, result 12 is 1.215E+05
CCHKGG: CHGEQZ(E) returned INFO= 8.
N= 10, JTYPE= 17, ISEED=( 598, 1490, 535, 753)
Matrix order= 10, type=17, seed= 598,1490, 535, 753, result 5 is 8.389E+06
Matrix order= 10, type=19, seed= 259,3819,1230,3265, result 12 is 32.18
CCHKGG: CHGEQZ(V) returned INFO= 10.
N= 10, JTYPE= 20, ISEED=( 3986, 3067, 2031, 2433)
Matrix order= 10, type=20, seed=3986,3067,2031,2433, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 10.
N= 10, JTYPE= 21, ISEED=( 2751, 3969, 2681, 1601)
Matrix order= 10, type=21, seed=2751,3969,2681,1601, result 5 is 8.389E+06
Matrix order= 10, type=22, seed= 652,1988, 45,1081, result 12 is 37.03
CCHKGG: CHGEQZ(E) returned INFO= 8.
N= 10, JTYPE= 23, ISEED=( 2721, 2562, 3986, 1345)
Matrix order= 10, type=23, seed=2721,2562,3986,1345, result 5 is 8.389E+06
Matrix order= 10, type=24, seed=3564,3280,1992,2185, result 5 is 1.214E+05
CCHKGG: CHGEQZ(E) returned INFO= 8.
N= 10, JTYPE= 25, ISEED=( 2759, 1485, 2150, 17)
Matrix order= 10, type=25, seed=2759,1485,2150, 17, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 7.
N= 16, JTYPE= 17, ISEED=( 2639, 693, 3829, 2377)
Matrix order= 16, type=17, seed=2639, 693,3829,2377, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 14.
N= 16, JTYPE= 18, ISEED=( 1573, 1937, 2898, 3641)
Matrix order= 16, type=18, seed=1573,1937,2898,3641, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 15.
N= 16, JTYPE= 19, ISEED=( 1450, 1, 3973, 3641)
Matrix order= 16, type=19, seed=1450, 1,3973,3641, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 9.
N= 16, JTYPE= 20, ISEED=( 1647, 3043, 952, 3641)
Matrix order= 16, type=20, seed=1647,3043, 952,3641, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 10.
N= 16, JTYPE= 21, ISEED=( 2065, 2869, 2027, 3641)
Matrix order= 16, type=21, seed=2065,2869,2027,3641, result 5 is 8.389E+06
CCHKGG: CHGEQZ(V) returned INFO= 16.
N= 16, JTYPE= 22, ISEED=( 3416, 3471, 2089, 873)
Matrix order= 16, type=22, seed=3416,3471,2089, 873, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 12.
N= 16, JTYPE= 23, ISEED=( 3238, 240, 926, 705)
Matrix order= 16, type=23, seed=3238, 240, 926, 705, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 5.
N= 16, JTYPE= 24, ISEED=( 2611, 3762, 1290, 1625)
Matrix order= 16, type=24, seed=2611,3762,1290,1625, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 12.
N= 16, JTYPE= 25, ISEED=( 1290, 3576, 3074, 1073)
Matrix order= 16, type=25, seed=1290,3576,3074,1073, result 5 is 8.389E+06
CGG: 25 out of 2072 tests failed to pass the threshold
*** Error code from CCHKGG = 12
CDRVGG: CGEGS returned INFO= 3.
N= 5, JTYPE= 20, ISEED=( 781, 1305, 2295, 317)

CGG -- Complex Generalized eigenvalue problem driver
Matrix types (see CDRVGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (S is Schur, T is triangular, Q and Z are unitary,
l and r are the appropriate left and right
eigenvectors, resp., a is alpha, b is beta, and
* means conjugate transpose.)
1 = | A - Q S Z* | / ( |A| n ulp ) 2 = | B - Q T Z* | / ( |B| n ulp )
3 = | I - QQ* | / ( n ulp ) 4 = | I - ZZ* | / ( n ulp )
5 = difference between (alpha,beta) and diagonals of (S,T)
6 = max | ( b A - a B )* l | / const. 7 = max | ( b A - a B ) r | / const.

Matrix order= 5, type=20, seed= 781,1305,2295, 317, result 1 is 8.389E+06
Matrix order= 5, type=24, seed= 712,3117, 514, 249, result 1 is 5.605E+04
CDRVGG: CGEGV returned INFO= 5.
N= 10, JTYPE= 17, ISEED=( 3591, 318, 2414, 2889)
Matrix order= 10, type=17, seed=3591, 318,2414,2889, result 6 is 8.389E+06
Matrix order= 10, type=18, seed= 757,2322,3939,3545, result 1 is 1.365E+04
Matrix order= 10, type=20, seed=3461,1605,3956,2905, result 1 is 2.050E+04
CDRVGG: CGEGS returned INFO= 7.
N= 10, JTYPE= 21, ISEED=( 795, 965, 158, 2585)
Matrix order= 10, type=21, seed= 795, 965, 158,2585, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 10.
N= 10, JTYPE= 23, ISEED=( 724, 3393, 754, 281)
Matrix order= 10, type=23, seed= 724,3393, 754, 281, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 6.
N= 10, JTYPE= 24, ISEED=( 2876, 421, 943, 289)
Matrix order= 10, type=24, seed=2876, 421, 943, 289, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 8.
N= 16, JTYPE= 17, ISEED=( 3015, 2627, 3450, 993)
Matrix order= 16, type=17, seed=3015,2627,3450, 993, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 7.
N= 16, JTYPE= 18, ISEED=( 2115, 300, 3925, 849)
Matrix order= 16, type=18, seed=2115, 300,3925, 849, result 1 is 8.389E+06
Matrix order= 16, type=19, seed= 913,2155,1424, 849, result 1 is 1.306E+04
CDRVGG: CGEGS returned INFO= 14.
N= 16, JTYPE= 20, ISEED=( 1879, 1906, 3019, 849)
Matrix order= 16, type=20, seed=1879,1906,3019, 849, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 7.
N= 16, JTYPE= 21, ISEED=( 3319, 3651, 518, 849)
Matrix order= 16, type=21, seed=3319,3651, 518, 849, result 1 is 8.389E+06
CDRVGG: CGEGV returned INFO= 6.
N= 16, JTYPE= 22, ISEED=( 17, 2983, 1528, 2305)
Matrix order= 16, type=22, seed= 17,2983,1528,2305, result 6 is 8.389E+06
CDRVGG: CGEGS returned INFO= 9.
N= 16, JTYPE= 23, ISEED=( 2608, 3613, 244, 665)
Matrix order= 16, type=23, seed=2608,3613, 244, 665, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 8.
N= 16, JTYPE= 24, ISEED=( 3462, 3117, 508, 1649)
Matrix order= 16, type=24, seed=3462,3117, 508,1649, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 15.
N= 16, JTYPE= 25, ISEED=( 3899, 4018, 3766, 2697)
Matrix order= 16, type=25, seed=3899,4018,3766,2697, result 1 is 8.389E+06
CGG drivers: 17 out of 1206 tests failed to pass the threshold
*** Error code from CDRVGG = 15


CGG: NB = 2, NBMIN = 2, NS = 2, MAXB = 2, NBCOL = 2
CGG -- Complex Generalized eigenvalue problem
Matrix types (see CCHKGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (H is Hessenberg, S is Schur, B, T, P are triangular,
U, V, Q, and Z are unitary, l and r are the
appropriate left and right eigenvectors, resp., a is
alpha, b is beta, and * means conjugate transpose.)
1 = | A - U H V* | / ( |A| n ulp ) 2 = | B - U T V* | / ( |B| n ulp )
3 = | I - UU* | / ( n ulp ) 4 = | I - VV* | / ( n ulp )
5 = | H - Q S Z* | / ( |H| n ulp ) 6 = | T - Q P Z* | / ( |T| n ulp )
7 = | I - QQ* | / ( n ulp ) 8 = | I - ZZ* | / ( n ulp )
9 = max | ( b S - a P )* l | / const. 10 = max | ( b H - a T )* l | / const.
11= max | ( b S - a P ) r | / const. 12 = max | ( b H - a T ) r | / const.

Matrix order= 5, type=21, seed=1201,1663,2283,3877, result 5 is 6063.90
Matrix order= 5, type=21, seed=1201,1663,2283,3877, result 12 is 1.248E+04
Matrix order= 5, type=22, seed=3279,3906,3237, 81, result 5 is 2478.05
Matrix order= 5, type=22, seed=3279,3906,3237, 81, result 12 is 6073.57
CCHKGG: CHGEQZ(E) returned INFO= 4.
N= 5, JTYPE= 23, ISEED=( 2077, 2802, 1319, 561)
Matrix order= 5, type=23, seed=2077,2802,1319, 561, result 5 is 8.389E+06
Matrix order= 5, type=24, seed= 404,1409, 525,2065, result 5 is 228.67
Matrix order= 5, type=24, seed= 404,1409, 525,2065, result 12 is 654.46
CCHKGG: CHGEQZ(E) returned INFO= 6.
N= 10, JTYPE= 17, ISEED=( 1404, 1204, 3270, 1505)
Matrix order= 10, type=17, seed=1404,1204,3270,1505, result 5 is 8.389E+06
Matrix order= 10, type=18, seed=1371,3123, 235, 497, result 5 is 85.27
Matrix order= 10, type=19, seed=1536,2138,2686, 689, result 5 is 1.612E+04
Matrix order= 10, type=19, seed=1536,2138,2686, 689, result 12 is 2.146E+04
CCHKGG: CHGEQZ(E) returned INFO= 9.
N= 10, JTYPE= 20, ISEED=( 2572, 39, 42, 881)
Matrix order= 10, type=20, seed=2572, 39, 42, 881, result 5 is 8.389E+06
CCHKGG: CHGEQZ(V) returned INFO= 10.
N= 10, JTYPE= 21, ISEED=( 2098, 667, 175, 1073)
Matrix order= 10, type=21, seed=2098, 667, 175,1073, result 5 is 8.389E+06
CCHKGG: CHGEQZ(V) returned INFO= 6.
N= 10, JTYPE= 22, ISEED=( 1962, 68, 2756, 681)
Matrix order= 10, type=22, seed=1962, 68,2756, 681, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 8.
N= 10, JTYPE= 23, ISEED=( 345, 1774, 537, 817)
Matrix order= 10, type=23, seed= 345,1774, 537, 817, result 5 is 8.389E+06
Matrix order= 10, type=24, seed= 872, 932, 117, 505, result 5 is 1.551E+05
Matrix order= 10, type=24, seed= 872, 932, 117, 505, result 12 is 4.277E+05
CCHKGG: CHGEQZ(E) returned INFO= 3.
N= 10, JTYPE= 25, ISEED=( 1773, 3203, 76, 257)
Matrix order= 10, type=25, seed=1773,3203, 76, 257, result 5 is 8.389E+06
Matrix order= 10, type=26, seed=4066,1171,1499, 585, result 12 is 23.37
CCHKGG: CHGEQZ(E) returned INFO= 11.
N= 16, JTYPE= 17, ISEED=( 2929, 1572, 489, 1721)
Matrix order= 16, type=17, seed=2929,1572, 489,1721, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 5.
N= 16, JTYPE= 18, ISEED=( 421, 3186, 1743, 3241)
Matrix order= 16, type=18, seed= 421,3186,1743,3241, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 10.
N= 16, JTYPE= 19, ISEED=( 236, 1328, 3538, 3241)
Matrix order= 16, type=19, seed= 236,1328,3538,3241, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 11.
N= 16, JTYPE= 20, ISEED=( 3986, 3152, 1237, 3241)
Matrix order= 16, type=20, seed=3986,3152,1237,3241, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 11.
N= 16, JTYPE= 21, ISEED=( 2436, 464, 3032, 3241)
Matrix order= 16, type=21, seed=2436, 464,3032,3241, result 5 is 8.389E+06
Matrix order= 16, type=22, seed=2030,1917,1958,3801, result 5 is 5.523E+04
Matrix order= 16, type=22, seed=2030,1917,1958,3801, result 10 is 2242.64
Matrix order= 16, type=22, seed=2030,1917,1958,3801, result 12 is 1149.84
CCHKGG: CHGEQZ(E) returned INFO= 13.
N= 16, JTYPE= 23, ISEED=( 2612, 2024, 791, 2225)
Matrix order= 16, type=23, seed=2612,2024, 791,2225, result 5 is 8.389E+06
CCHKGG: CHGEQZ(V) returned INFO= 15.
N= 16, JTYPE= 24, ISEED=( 3197, 3970, 1171, 713)
Matrix order= 16, type=24, seed=3197,3970,1171, 713, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 15.
N= 16, JTYPE= 25, ISEED=( 1991, 2627, 808, 801)
Matrix order= 16, type=25, seed=1991,2627, 808, 801, result 5 is 8.389E+06
CGG: 30 out of 2079 tests failed to pass the threshold
*** Error code from CCHKGG = 15

CGG -- Complex Generalized eigenvalue problem driver
Matrix types (see CDRVGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (S is Schur, T is triangular, Q and Z are unitary,
l and r are the appropriate left and right
eigenvectors, resp., a is alpha, b is beta, and
* means conjugate transpose.)
1 = | A - Q S Z* | / ( |A| n ulp ) 2 = | B - Q T Z* | / ( |B| n ulp )
3 = | I - QQ* | / ( n ulp ) 4 = | I - ZZ* | / ( n ulp )
5 = difference between (alpha,beta) and diagonals of (S,T)
6 = max | ( b A - a B )* l | / const. 7 = max | ( b A - a B ) r | / const.

Matrix order= 5, type=17, seed=2939,2900,2935,4029, result 1 is 4.965E+05
Matrix order= 5, type=18, seed=3354,1530,2150,1677, result 1 is 6.089E+04
CDRVGG: CGEGV returned INFO= 4.
N= 5, JTYPE= 21, ISEED=( 568, 147, 770, 1885)
Matrix order= 5, type=21, seed= 568, 147, 770,1885, result 6 is 8.389E+06
Matrix order= 5, type=22, seed=2709,2598, 263, 425, result 1 is 1.820E+05
CDRVGG: CGEGS returned INFO= 5.
N= 5, JTYPE= 24, ISEED=( 3676, 3713, 3044, 873)
Matrix order= 5, type=24, seed=3676,3713,3044, 873, result 1 is 8.389E+06
Matrix order= 5, type=25, seed= 494, 235,3426, 585, result 1 is 3.680E+05
CDRVGG: CGEGV returned INFO= 6.
N= 10, JTYPE= 17, ISEED=( 3227, 1941, 3856, 2233)
Matrix order= 10, type=17, seed=3227,1941,3856,2233, result 6 is 8.389E+06
Matrix order= 10, type=18, seed=2621,3577,2629, 585, result 1 is 2.497E+04
CDRVGG: CGEGS returned INFO= 9.
N= 10, JTYPE= 19, ISEED=( 1898, 501, 2694, 1289)
Matrix order= 10, type=19, seed=1898, 501,2694,1289, result 1 is 8.389E+06
CDRVGG: CGEGV returned INFO= 7.
N= 10, JTYPE= 20, ISEED=( 929, 1650, 248, 1993)
Matrix order= 10, type=20, seed= 929,1650, 248,1993, result 6 is 8.389E+06
Matrix order= 10, type=21, seed= 363,3556,3675,2697, result 1 is 4.135E+04
CDRVGG: CGEGS returned INFO= 4.
N= 10, JTYPE= 22, ISEED=( 4009, 3113, 3765, 1601)
Matrix order= 10, type=22, seed=4009,3113,3765,1601, result 1 is 8.389E+06
CDRVGG: CGEGV returned INFO= 7.
N= 10, JTYPE= 24, ISEED=( 1443, 2046, 3430, 273)
Matrix order= 10, type=24, seed=1443,2046,3430, 273, result 1 is 1.406E+05
Matrix order= 10, type=24, seed=1443,2046,3430, 273, result 6 is 8.389E+06
CDRVGG: CGEGS returned INFO= 7.
N= 10, JTYPE= 25, ISEED=( 1179, 3214, 1518, 1753)
Matrix order= 10, type=25, seed=1179,3214,1518,1753, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 11.
N= 16, JTYPE= 17, ISEED=( 1203, 2225, 3030, 2001)
Matrix order= 16, type=17, seed=1203,2225,3030,2001, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 11.
N= 16, JTYPE= 18, ISEED=( 450, 3502, 944, 65)
Matrix order= 16, type=18, seed= 450,3502, 944, 65, result 1 is 8.389E+06
CDRVGG: CGEGV returned INFO= 9.
N= 16, JTYPE= 19, ISEED=( 1343, 3257, 3131, 65)
Matrix order= 16, type=19, seed=1343,3257,3131, 65, result 1 is 1.126E+04
Matrix order= 16, type=19, seed=1343,3257,3131, 65, result 6 is 8.389E+06
CDRVGG: CGEGS returned INFO= 5.
N= 16, JTYPE= 20, ISEED=( 2521, 2302, 1222, 65)
Matrix order= 16, type=20, seed=2521,2302,1222, 65, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 16.
N= 16, JTYPE= 21, ISEED=( 2243, 635, 3409, 65)
Matrix order= 16, type=21, seed=2243, 635,3409, 65, result 1 is 8.389E+06
CDRVGG: CGEGV returned INFO= 14.
N= 16, JTYPE= 22, ISEED=( 3860, 2921, 3475, 2801)
Matrix order= 16, type=22, seed=3860,2921,3475,2801, result 6 is 8.389E+06
CDRVGG: CGEGV returned INFO= 12.
N= 16, JTYPE= 23, ISEED=( 3383, 685, 1640, 2825)
Matrix order= 16, type=23, seed=3383, 685,1640,2825, result 1 is 5935.01
Matrix order= 16, type=23, seed=3383, 685,1640,2825, result 6 is 8.389E+06
CDRVGG: CGEGS returned INFO= 15.
N= 16, JTYPE= 24, ISEED=( 15, 1505, 1736, 353)
Matrix order= 16, type=24, seed= 15,1505,1736, 353, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 12.
N= 16, JTYPE= 25, ISEED=( 1433, 821, 3265, 1017)
Matrix order= 16, type=25, seed=1433, 821,3265,1017, result 1 is 8.389E+06
CGG drivers: 26 out of 1207 tests failed to pass the threshold
*** Error code from CDRVGG = 12


CGG: NB = 2, NBMIN = 2, NS = 4, MAXB = 2, NBCOL = 2
CCHKGG: CHGEQZ(E) returned INFO= 4.
N= 5, JTYPE= 17, ISEED=( 1915, 2136, 2450, 53)
CGG -- Complex Generalized eigenvalue problem
Matrix types (see CCHKGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (H is Hessenberg, S is Schur, B, T, P are triangular,
U, V, Q, and Z are unitary, l and r are the
appropriate left and right eigenvectors, resp., a is
alpha, b is beta, and * means conjugate transpose.)
1 = | A - U H V* | / ( |A| n ulp ) 2 = | B - U T V* | / ( |B| n ulp )
3 = | I - UU* | / ( n ulp ) 4 = | I - VV* | / ( n ulp )
5 = | H - Q S Z* | / ( |H| n ulp ) 6 = | T - Q P Z* | / ( |T| n ulp )
7 = | I - QQ* | / ( n ulp ) 8 = | I - ZZ* | / ( n ulp )
9 = max | ( b S - a P )* l | / const. 10 = max | ( b H - a T )* l | / const.
11= max | ( b S - a P ) r | / const. 12 = max | ( b H - a T ) r | / const.

Matrix order= 5, type=17, seed=1915,2136,2450, 53, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 5.
N= 5, JTYPE= 18, ISEED=( 2703, 136, 2165, 1669)
Matrix order= 5, type=18, seed=2703, 136,2165,1669, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 5.
N= 5, JTYPE= 21, ISEED=( 165, 619, 2213, 1749)
Matrix order= 5, type=21, seed= 165, 619,2213,1749, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 5.
N= 5, JTYPE= 23, ISEED=( 283, 2843, 3007, 289)
Matrix order= 5, type=23, seed= 283,2843,3007, 289, result 5 is 8.389E+06
Matrix order= 5, type=24, seed=1089,1487,3707,2305, result 5 is 430.80
Matrix order= 5, type=24, seed=1089,1487,3707,2305, result 12 is 936.52
CCHKGG: CHGEQZ(E) returned INFO= 5.
N= 5, JTYPE= 25, ISEED=( 1633, 376, 3792, 1249)
Matrix order= 5, type=25, seed=1633, 376,3792,1249, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 8.
N= 10, JTYPE= 17, ISEED=( 3292, 365, 1696, 2513)
Matrix order= 10, type=17, seed=3292, 365,1696,2513, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 5.
N= 10, JTYPE= 18, ISEED=( 3242, 785, 571, 1249)
Matrix order= 10, type=18, seed=3242, 785, 571,1249, result 5 is 8.389E+06
Matrix order= 10, type=19, seed=1623, 405,2997,2465, result 5 is 1.596E+04
Matrix order= 10, type=19, seed=1623, 405,2997,2465, result 12 is 2.558E+04
CCHKGG: CHGEQZ(E) returned INFO= 5.
N= 10, JTYPE= 20, ISEED=( 3368, 3418, 440, 3681)
Matrix order= 10, type=20, seed=3368,3418, 440,3681, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 10.
N= 10, JTYPE= 21, ISEED=( 408, 1546, 1797, 801)
Matrix order= 10, type=21, seed= 408,1546,1797, 801, result 5 is 8.389E+06
Matrix order= 10, type=22, seed=3599, 71, 890,2585, result 5 is 4.959E+04
CCHKGG: CHGEQZ(E) returned INFO= 8.
N= 10, JTYPE= 23, ISEED=( 605, 3553, 432, 545)
Matrix order= 10, type=23, seed= 605,3553, 432, 545, result 5 is 8.389E+06
Matrix order= 10, type=24, seed= 586, 836,3398,1129, result 5 is 1.688E+05
Matrix order= 10, type=24, seed= 586, 836,3398,1129, result 12 is 7.032E+05
CCHKGG: CHGEQZ(E) returned INFO= 7.
N= 10, JTYPE= 25, ISEED=( 596, 3619, 2479, 753)
Matrix order= 10, type=25, seed= 596,3619,2479, 753, result 5 is 8.389E+06
CCHKGG: CHGEQZ(S) returned INFO= 16.
N= 16, JTYPE= 17, ISEED=( 1459, 411, 781, 3369)
Matrix order= 16, type=17, seed=1459, 411, 781,3369, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 11.
N= 16, JTYPE= 19, ISEED=( 3976, 3660, 2783, 1049)
Matrix order= 16, type=19, seed=3976,3660,2783,1049, result 5 is 8.389E+06
CCHKGG: CHGEQZ(S) returned INFO= 5.
N= 16, JTYPE= 20, ISEED=( 1903, 1121, 1970, 1049)
Matrix order= 16, type=20, seed=1903,1121,1970,1049, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 15.
N= 16, JTYPE= 21, ISEED=( 1858, 1223, 1157, 1049)
Matrix order= 16, type=21, seed=1858,1223,1157,1049, result 5 is 8.389E+06
Matrix order= 16, type=22, seed= 644,2288,2167, 841, result 5 is 559.11
Matrix order= 16, type=22, seed= 644,2288,2167, 841, result 10 is 47.55
Matrix order= 16, type=22, seed= 644,2288,2167, 841, result 12 is 1689.63
CCHKGG: CHGEQZ(E) returned INFO= 11.
N= 16, JTYPE= 23, ISEED=( 4082, 643, 1400, 4001)
Matrix order= 16, type=23, seed=4082, 643,1400,4001, result 5 is 8.389E+06
CCHKGG: CHGEQZ(V) returned INFO= 14.
N= 16, JTYPE= 24, ISEED=( 1083, 2820, 3805, 2105)
Matrix order= 16, type=24, seed=1083,2820,3805,2105, result 5 is 8.389E+06
CCHKGG: CHGEQZ(E) returned INFO= 15.
N= 16, JTYPE= 25, ISEED=( 3999, 208, 3981, 785)
Matrix order= 16, type=25, seed=3999, 208,3981, 785, result 5 is 8.389E+06
Matrix order= 16, type=26, seed=1861, 161,2249,1577, result 5 is 1467.46
Matrix order= 16, type=26, seed=1861, 161,2249,1577, result 10 is 1440.66
Matrix order= 16, type=26, seed=1861, 161,2249,1577, result 12 is 4731.50
CGG: 31 out of 2058 tests failed to pass the threshold
*** Error code from CCHKGG = 15
CDRVGG: CGEGV returned INFO= 5.
N= 5, JTYPE= 19, ISEED=( 1103, 1257, 630, 3757)

CGG -- Complex Generalized eigenvalue problem driver
Matrix types (see CDRVGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (S is Schur, T is triangular, Q and Z are unitary,
l and r are the appropriate left and right
eigenvectors, resp., a is alpha, b is beta, and
* means conjugate transpose.)
1 = | A - Q S Z* | / ( |A| n ulp ) 2 = | B - Q T Z* | / ( |B| n ulp )
3 = | I - QQ* | / ( n ulp ) 4 = | I - ZZ* | / ( n ulp )
5 = difference between (alpha,beta) and diagonals of (S,T)
6 = max | ( b A - a B )* l | / const. 7 = max | ( b A - a B ) r | / const.

Matrix order= 5, type=19, seed=1103,1257, 630,3757, result 6 is 8.389E+06
CDRVGG: CGEGS returned INFO= 5.
N= 5, JTYPE= 23, ISEED=( 3838, 2020, 1541, 505)
Matrix order= 5, type=23, seed=3838,2020,1541, 505, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 10.
N= 10, JTYPE= 17, ISEED=( 2150, 113, 1026, 3881)
Matrix order= 10, type=17, seed=2150, 113,1026,3881, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 4.
N= 10, JTYPE= 18, ISEED=( 257, 4084, 2911, 4025)
Matrix order= 10, type=18, seed= 257,4084,2911,4025, result 1 is 8.389E+06
Matrix order= 10, type=19, seed=3889,1749,1254,1657, result 1 is 2.414E+04
CDRVGG: CGEGS returned INFO= 7.
N= 10, JTYPE= 20, ISEED=( 2138, 442, 909, 3385)
Matrix order= 10, type=20, seed=2138, 442, 909,3385, result 1 is 8.389E+06
CDRVGG: CGEGV returned INFO= 10.
N= 10, JTYPE= 22, ISEED=( 288, 3638, 2347, 1073)
Matrix order= 10, type=22, seed= 288,3638,2347,1073, result 6 is 8.389E+06
CDRVGG: CGEGS returned INFO= 5.
N= 10, JTYPE= 23, ISEED=( 2111, 180, 299, 2809)
Matrix order= 10, type=23, seed=2111, 180, 299,2809, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 4.
N= 10, JTYPE= 24, ISEED=( 3306, 2399, 2411, 513)
Matrix order= 10, type=24, seed=3306,2399,2411, 513, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 9.
N= 10, JTYPE= 25, ISEED=( 3783, 3802, 326, 2889)
Matrix order= 10, type=25, seed=3783,3802, 326,2889, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 9.
N= 16, JTYPE= 17, ISEED=( 1200, 651, 3244, 3265)
Matrix order= 16, type=17, seed=1200, 651,3244,3265, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 8.
N= 16, JTYPE= 18, ISEED=( 1769, 3903, 3003, 3633)
Matrix order= 16, type=18, seed=1769,3903,3003,3633, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 6.
N= 16, JTYPE= 19, ISEED=( 2389, 3280, 406, 3633)
Matrix order= 16, type=19, seed=2389,3280, 406,3633, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 7.
N= 16, JTYPE= 20, ISEED=( 2972, 1545, 1905, 3633)
Matrix order= 16, type=20, seed=2972,1545,1905,3633, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 12.
N= 16, JTYPE= 21, ISEED=( 2496, 2795, 3404, 3633)
Matrix order= 16, type=21, seed=2496,2795,3404,3633, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 13.
N= 16, JTYPE= 22, ISEED=( 1333, 3890, 2426, 3553)
Matrix order= 16, type=22, seed=1333,3890,2426,3553, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 13.
N= 16, JTYPE= 23, ISEED=( 3578, 2518, 3938, 3193)
Matrix order= 16, type=23, seed=3578,2518,3938,3193, result 1 is 8.389E+06
CDRVGG: CGEGS returned INFO= 13.
N= 16, JTYPE= 24, ISEED=( 3402, 3335, 502, 3409)
Matrix order= 16, type=24, seed=3402,3335, 502,3409, result 1 is 8.389E+06
Matrix order= 16, type=25, seed=1265,1204,1296,1641, result 1 is 1.391E+04
CGG drivers: 19 out of 1182 tests failed to pass the threshold
*** Error code from CDRVGG = 13


End of tests
Total time used = 1.13 seconds
___________________________________________________
And this is zgg.out:


Tests of the Generalized Nonsymmetric Eigenvalue Problem routines

LAPACK VERSION 3.0, released June 30, 1999 

The following parameter values will be used:
M: 0 1 2 3 5 10 16
N: 0 1 2 3 5 10 16
NB: 1 1 2 2
NBMIN: 40 40 2 2
NS: 2 4 2 4
MAXB: 40 40 2 2
NBCOL: 40 40 2 2

Relative machine underflow is taken to be 0.222507-307
Relative machine overflow is taken to be 0.179769+309
Relative machine precision is taken to be 0.111022E-15

Routines pass computational tests if test ratio is less than 20.00


ZGG routines passed the tests of the error exits ( 27 tests done)


ZGG: NB = 1, NBMIN = 40, NS = 2, MAXB = 40, NBCOL = 40
ZGG -- Complex Generalized eigenvalue problem
Matrix types (see ZCHKGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (H is Hessenberg, S is Schur, B, T, P are triangular,
U, V, Q, and Z are unitary, l and r are the
appropriate left and right eigenvectors, resp., a is
alpha, b is beta, and * means conjugate transpose.)
1 = | A - U H V* | / ( |A| n ulp ) 2 = | B - U T V* | / ( |B| n ulp )
3 = | I - UU* | / ( n ulp ) 4 = | I - VV* | / ( n ulp )
5 = | H - Q S Z* | / ( |H| n ulp ) 6 = | T - Q P Z* | / ( |T| n ulp )
7 = | I - QQ* | / ( n ulp ) 8 = | I - ZZ* | / ( n ulp )
9 = max | ( b S - a P )* l | / const. 10 = max | ( b H - a T )* l | / const.
11= max | ( b S - a P ) r | / const. 12 = max | ( b H - a T ) r | / const.

Matrix order= 5, type=17, seed=3150,3277,3584,2597, result 5 is 2.790E+11
Matrix order= 5, type=17, seed=3150,3277,3584,2597, result 12 is 6.682E+11
Matrix order= 5, type=18, seed=1198,3649,2662,3957, result 5 is 4.646E+11
Matrix order= 5, type=18, seed=1198,3649,2662,3957, result 12 is 1.313E+12
Matrix order= 5, type=20, seed=3632, 142,2005,1877, result 5 is 1.904E+12
Matrix order= 5, type=20, seed=3632, 142,2005,1877, result 12 is 4.957E+12
Matrix order= 5, type=21, seed=2406,3874, 631,3781, result 5 is 2.191E+09
Matrix order= 5, type=21, seed=2406,3874, 631,3781, result 12 is 5.169E+09
ZCHKGG: ZHGEQZ(E) returned INFO= 3.
N= 5, JTYPE= 23, ISEED=( 3973, 3739, 2792, 1873)
Matrix order= 5, type=23, seed=3973,3739,2792,1873, result 5 is 4.504E+15
Matrix order= 5, type=24, seed= 871,2053,3644,2353, result 5 is 6.389E+13
Matrix order= 5, type=24, seed= 871,2053,3644,2353, result 12 is 4.259E+13
ZCHKGG: ZHGEQZ(E) returned INFO= 3.
N= 5, JTYPE= 25, ISEED=( 3613, 2051, 948, 3857)
Matrix order= 5, type=25, seed=3613,2051, 948,3857, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 9.
N= 10, JTYPE= 17, ISEED=( 3112, 827, 1844, 257)
Matrix order= 10, type=17, seed=3112, 827,1844, 257, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 9.
N= 10, JTYPE= 18, ISEED=( 2548, 3287, 2863, 3857)
Matrix order= 10, type=18, seed=2548,3287,2863,3857, result 5 is 4.504E+15
Matrix order= 10, type=19, seed=1358,3449,1048,2001, result 5 is 1.475E+12
Matrix order= 10, type=19, seed=1358,3449,1048,2001, result 12 is 1.724E+12
Matrix order= 10, type=20, seed= 762, 406, 826, 145, result 5 is 6.505E+11
Matrix order= 10, type=20, seed= 762, 406, 826, 145, result 12 is 5.892E+11
Matrix order= 10, type=21, seed= 88,1442,3924,2385, result 5 is 1.818E+12
Matrix order= 10, type=21, seed= 88,1442,3924,2385, result 12 is 3.046E+12
ZCHKGG: ZHGEQZ(V) returned INFO= 5.
N= 10, JTYPE= 22, ISEED=( 3978, 339, 1822, 3785)
Matrix order= 10, type=22, seed=3978, 339,1822,3785, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 8.
N= 10, JTYPE= 23, ISEED=( 2627, 1986, 1036, 2129)
Matrix order= 10, type=23, seed=2627,1986,1036,2129, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 6.
N= 10, JTYPE= 25, ISEED=( 414, 1096, 1470, 33)
Matrix order= 10, type=25, seed= 414,1096,1470, 33, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 15.
N= 16, JTYPE= 17, ISEED=( 842, 70, 3499, 1241)
Matrix order= 16, type=17, seed= 842, 70,3499,1241, result 5 is 4.504E+15
Matrix order= 16, type=18, seed=2005,3192,2302,2249, result 5 is 172.05
Matrix order= 16, type=18, seed=2005,3192,2302,2249, result 12 is 825.64
ZCHKGG: ZHGEQZ(E) returned INFO= 8.
N= 16, JTYPE= 19, ISEED=( 3742, 1684, 3425, 2249)
Matrix order= 16, type=19, seed=3742,1684,3425,2249, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 9.
N= 16, JTYPE= 20, ISEED=( 2269, 2610, 452, 2249)
Matrix order= 16, type=20, seed=2269,2610, 452,2249, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 13.
N= 16, JTYPE= 21, ISEED=( 1246, 1872, 1575, 2249)
Matrix order= 16, type=21, seed=1246,1872,1575,2249, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(V) returned INFO= 10.
N= 16, JTYPE= 22, ISEED=( 2702, 1183, 3479, 249)
Matrix order= 16, type=22, seed=2702,1183,3479, 249, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 13.
N= 16, JTYPE= 23, ISEED=( 1518, 558, 1661, 3537)
Matrix order= 16, type=23, seed=1518, 558,1661,3537, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(V) returned INFO= 12.
N= 16, JTYPE= 24, ISEED=( 280, 4055, 3020, 745)
Matrix order= 16, type=24, seed= 280,4055,3020, 745, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 15.
N= 16, JTYPE= 25, ISEED=( 2432, 2576, 2044, 1601)
Matrix order= 16, type=25, seed=2432,2576,2044,1601, result 5 is 4.504E+15
Matrix order= 16, type=26, seed=1851,1924,3217,3545, result 5 is 230.18
Matrix order= 16, type=26, seed=1851,1924,3217,3545, result 10 is 222.77
Matrix order= 16, type=26, seed=1851,1924,3217,3545, result 12 is 382.16
ZGG: 36 out of 2079 tests failed to pass the threshold
*** Error code from ZCHKGG = 15
ZDRVGG: ZGEGV returned INFO= 10.
N= 10, JTYPE= 17, ISEED=( 1231, 2336, 2198, 1753)

ZGG -- Complex Generalized eigenvalue problem driver
Matrix types (see ZDRVGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (S is Schur, T is triangular, Q and Z are unitary,
l and r are the appropriate left and right
eigenvectors, resp., a is alpha, b is beta, and
* means conjugate transpose.)
1 = | A - Q S Z* | / ( |A| n ulp ) 2 = | B - Q T Z* | / ( |B| n ulp )
3 = | I - QQ* | / ( n ulp ) 4 = | I - ZZ* | / ( n ulp )
5 = difference between (alpha,beta) and diagonals of (S,T)
6 = max | ( b A - a B )* l | / const. 7 = max | ( b A - a B ) r | / const.

Matrix order= 10, type=17, seed=1231,2336,2198,1753, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 10.
N= 10, JTYPE= 18, ISEED=( 322, 287, 1477, 617)
Matrix order= 10, type=18, seed= 322, 287,1477, 617, result 1 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 10.
N= 10, JTYPE= 20, ISEED=( 2723, 3193, 3979, 2025)
Matrix order= 10, type=20, seed=2723,3193,3979,2025, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 7.
N= 10, JTYPE= 21, ISEED=( 634, 2449, 1576, 681)
Matrix order= 10, type=21, seed= 634,2449,1576, 681, result 1 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 6.
N= 10, JTYPE= 22, ISEED=( 3505, 965, 2045, 3425)
Matrix order= 10, type=22, seed=3505, 965,2045,3425, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 3.
N= 10, JTYPE= 23, ISEED=( 2977, 2947, 2370, 2473)
Matrix order= 10, type=23, seed=2977,2947,2370,2473, result 1 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 9.
N= 10, JTYPE= 24, ISEED=( 635, 516, 3095, 561)
Matrix order= 10, type=24, seed= 635, 516,3095, 561, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 12.
N= 16, JTYPE= 17, ISEED=( 75, 3661, 2089, 241)
Matrix order= 16, type=17, seed= 75,3661,2089, 241, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 11.
N= 16, JTYPE= 18, ISEED=( 2670, 132, 428, 1889)
Matrix order= 16, type=18, seed=2670, 132, 428,1889, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 14.
N= 16, JTYPE= 19, ISEED=( 864, 3448, 151, 1889)
Matrix order= 16, type=19, seed= 864,3448, 151,1889, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 15.
N= 16, JTYPE= 20, ISEED=( 3127, 1476, 3970, 1889)
Matrix order= 16, type=20, seed=3127,1476,3970,1889, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 16.
N= 16, JTYPE= 21, ISEED=( 388, 2410, 3693, 1889)
Matrix order= 16, type=21, seed= 388,2410,3693,1889, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 11.
N= 16, JTYPE= 22, ISEED=( 1176, 413, 1114, 2065)
Matrix order= 16, type=22, seed=1176, 413,1114,2065, result 1 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 10.
N= 16, JTYPE= 23, ISEED=( 965, 2985, 718, 809)
Matrix order= 16, type=23, seed= 965,2985, 718, 809, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 10.
N= 16, JTYPE= 25, ISEED=( 310, 3008, 2985, 2585)
Matrix order= 16, type=25, seed= 310,3008,2985,2585, result 1 is 4.504E+15
ZGG drivers: 15 out of 1209 tests failed to pass the threshold
*** Error code from ZDRVGG = 10


ZGG: NB = 1, NBMIN = 40, NS = 4, MAXB = 40, NBCOL = 40
ZCHKGG: ZHGEQZ(V) returned INFO= 4.
N= 5, JTYPE= 17, ISEED=( 4031, 2858, 463, 469)
ZGG -- Complex Generalized eigenvalue problem
Matrix types (see ZCHKGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (H is Hessenberg, S is Schur, B, T, P are triangular,
U, V, Q, and Z are unitary, l and r are the
appropriate left and right eigenvectors, resp., a is
alpha, b is beta, and * means conjugate transpose.)
1 = | A - U H V* | / ( |A| n ulp ) 2 = | B - U T V* | / ( |B| n ulp )
3 = | I - UU* | / ( n ulp ) 4 = | I - VV* | / ( n ulp )
5 = | H - Q S Z* | / ( |H| n ulp ) 6 = | T - Q P Z* | / ( |T| n ulp )
7 = | I - QQ* | / ( n ulp ) 8 = | I - ZZ* | / ( n ulp )
9 = max | ( b S - a P )* l | / const. 10 = max | ( b H - a T )* l | / const.
11= max | ( b S - a P ) r | / const. 12 = max | ( b H - a T ) r | / const.

Matrix order= 5, type=17, seed=4031,2858, 463, 469, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(V) returned INFO= 5.
N= 5, JTYPE= 19, ISEED=( 2625, 2587, 1736, 2197)
Matrix order= 5, type=19, seed=2625,2587,1736,2197, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 4.
N= 5, JTYPE= 21, ISEED=( 2577, 1945, 4069, 3189)
Matrix order= 5, type=21, seed=2577,1945,4069,3189, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 10.
N= 10, JTYPE= 17, ISEED=( 598, 1490, 535, 753)
Matrix order= 10, type=17, seed= 598,1490, 535, 753, result 5 is 4.504E+15
Matrix order= 10, type=18, seed=1621,3915,1623, 1, result 5 is 5.989E+13
Matrix order= 10, type=18, seed=1621,3915,1623, 1, result 12 is 1.377E+14
Matrix order= 10, type=19, seed= 259,3819,1230,3265, result 5 is 4.185E+12
Matrix order= 10, type=19, seed= 259,3819,1230,3265, result 12 is 1.540E+13
ZCHKGG: ZHGEQZ(V) returned INFO= 5.
N= 10, JTYPE= 22, ISEED=( 652, 1988, 45, 1081)
Matrix order= 10, type=22, seed= 652,1988, 45,1081, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 4.
N= 10, JTYPE= 24, ISEED=( 3564, 3280, 1992, 2185)
Matrix order= 10, type=24, seed=3564,3280,1992,2185, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 8.
N= 10, JTYPE= 25, ISEED=( 2759, 1485, 2150, 17)
Matrix order= 10, type=25, seed=2759,1485,2150, 17, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 12.
N= 16, JTYPE= 17, ISEED=( 2639, 693, 3829, 2377)
Matrix order= 16, type=17, seed=2639, 693,3829,2377, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 7.
N= 16, JTYPE= 18, ISEED=( 1573, 1937, 2898, 3641)
Matrix order= 16, type=18, seed=1573,1937,2898,3641, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 15.
N= 16, JTYPE= 19, ISEED=( 1450, 1, 3973, 3641)
Matrix order= 16, type=19, seed=1450, 1,3973,3641, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 16.
N= 16, JTYPE= 20, ISEED=( 1647, 3043, 952, 3641)
Matrix order= 16, type=20, seed=1647,3043, 952,3641, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 16.
N= 16, JTYPE= 21, ISEED=( 2065, 2869, 2027, 3641)
Matrix order= 16, type=21, seed=2065,2869,2027,3641, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(V) returned INFO= 5.
N= 16, JTYPE= 22, ISEED=( 3416, 3471, 2089, 873)
Matrix order= 16, type=22, seed=3416,3471,2089, 873, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 14.
N= 16, JTYPE= 23, ISEED=( 3238, 240, 926, 705)
Matrix order= 16, type=23, seed=3238, 240, 926, 705, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(V) returned INFO= 13.
N= 16, JTYPE= 24, ISEED=( 2611, 3762, 1290, 1625)
Matrix order= 16, type=24, seed=2611,3762,1290,1625, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 14.
N= 16, JTYPE= 25, ISEED=( 1290, 3576, 3074, 1073)
Matrix order= 16, type=25, seed=1290,3576,3074,1073, result 5 is 4.504E+15
ZGG: 20 out of 2072 tests failed to pass the threshold
*** Error code from ZCHKGG = 14
ZDRVGG: ZGEGV returned INFO= 5.
N= 5, JTYPE= 22, ISEED=( 2042, 1387, 3759, 825)

ZGG -- Complex Generalized eigenvalue problem driver
Matrix types (see ZDRVGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (S is Schur, T is triangular, Q and Z are unitary,
l and r are the appropriate left and right
eigenvectors, resp., a is alpha, b is beta, and
* means conjugate transpose.)
1 = | A - Q S Z* | / ( |A| n ulp ) 2 = | B - Q T Z* | / ( |B| n ulp )
3 = | I - QQ* | / ( n ulp ) 4 = | I - ZZ* | / ( n ulp )
5 = difference between (alpha,beta) and diagonals of (S,T)
6 = max | ( b A - a B )* l | / const. 7 = max | ( b A - a B ) r | / const.

Matrix order= 5, type=22, seed=2042,1387,3759, 825, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 4.
N= 5, JTYPE= 23, ISEED=( 1891, 1197, 2441, 2073)
Matrix order= 5, type=23, seed=1891,1197,2441,2073, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 3.
N= 5, JTYPE= 25, ISEED=( 3030, 3547, 1872, 3545)
Matrix order= 5, type=25, seed=3030,3547,1872,3545, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 10.
N= 10, JTYPE= 17, ISEED=( 3591, 318, 2414, 2889)
Matrix order= 10, type=17, seed=3591, 318,2414,2889, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 8.
N= 10, JTYPE= 18, ISEED=( 757, 2322, 3939, 3545)
Matrix order= 10, type=18, seed= 757,2322,3939,3545, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 9.
N= 10, JTYPE= 19, ISEED=( 2304, 910, 843, 3225)
Matrix order= 10, type=19, seed=2304, 910, 843,3225, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 7.
N= 10, JTYPE= 21, ISEED=( 795, 965, 158, 2585)
Matrix order= 10, type=21, seed= 795, 965, 158,2585, result 1 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 8.
N= 10, JTYPE= 22, ISEED=( 3454, 2343, 2896, 2385)
Matrix order= 10, type=22, seed=3454,2343,2896,2385, result 6 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 8.
N= 10, JTYPE= 23, ISEED=( 724, 3393, 754, 281)
Matrix order= 10, type=23, seed= 724,3393, 754, 281, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 5.
N= 10, JTYPE= 24, ISEED=( 2876, 421, 943, 289)
Matrix order= 10, type=24, seed=2876, 421, 943, 289, result 1 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 9.
N= 10, JTYPE= 25, ISEED=( 2028, 2845, 2920, 2921)
Matrix order= 10, type=25, seed=2028,2845,2920,2921, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 13.
N= 16, JTYPE= 17, ISEED=( 3015, 2627, 3450, 993)
Matrix order= 16, type=17, seed=3015,2627,3450, 993, result 1 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 7.
N= 16, JTYPE= 18, ISEED=( 2115, 300, 3925, 849)
Matrix order= 16, type=18, seed=2115, 300,3925, 849, result 6 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 15.
N= 16, JTYPE= 19, ISEED=( 913, 2155, 1424, 849)
Matrix order= 16, type=19, seed= 913,2155,1424, 849, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 9.
N= 16, JTYPE= 20, ISEED=( 1879, 1906, 3019, 849)
Matrix order= 16, type=20, seed=1879,1906,3019, 849, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 13.
N= 16, JTYPE= 21, ISEED=( 3319, 3651, 518, 849)
Matrix order= 16, type=21, seed=3319,3651, 518, 849, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 15.
N= 16, JTYPE= 22, ISEED=( 17, 2983, 1528, 2305)
Matrix order= 16, type=22, seed= 17,2983,1528,2305, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 13.
N= 16, JTYPE= 23, ISEED=( 2608, 3613, 244, 665)
Matrix order= 16, type=23, seed=2608,3613, 244, 665, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 12.
N= 16, JTYPE= 24, ISEED=( 3462, 3117, 508, 1649)
Matrix order= 16, type=24, seed=3462,3117, 508,1649, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 12.
N= 16, JTYPE= 25, ISEED=( 3899, 4018, 3766, 2697)
Matrix order= 16, type=25, seed=3899,4018,3766,2697, result 1 is 4.504E+15
ZGG drivers: 20 out of 1184 tests failed to pass the threshold
*** Error code from ZDRVGG = 12


ZGG: NB = 2, NBMIN = 2, NS = 2, MAXB = 2, NBCOL = 2
ZCHKGG: ZHGEQZ(E) returned INFO= 5.
N= 5, JTYPE= 17, ISEED=( 2724, 2876, 1131, 3717)
ZGG -- Complex Generalized eigenvalue problem
Matrix types (see ZCHKGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (H is Hessenberg, S is Schur, B, T, P are triangular,
U, V, Q, and Z are unitary, l and r are the
appropriate left and right eigenvectors, resp., a is
alpha, b is beta, and * means conjugate transpose.)
1 = | A - U H V* | / ( |A| n ulp ) 2 = | B - U T V* | / ( |B| n ulp )
3 = | I - UU* | / ( n ulp ) 4 = | I - VV* | / ( n ulp )
5 = | H - Q S Z* | / ( |H| n ulp ) 6 = | T - Q P Z* | / ( |T| n ulp )
7 = | I - QQ* | / ( n ulp ) 8 = | I - ZZ* | / ( n ulp )
9 = max | ( b S - a P )* l | / const. 10 = max | ( b H - a T )* l | / const.
11= max | ( b S - a P ) r | / const. 12 = max | ( b H - a T ) r | / const.

Matrix order= 5, type=17, seed=2724,2876,1131,3717, result 5 is 4.504E+15
Matrix order= 5, type=18, seed=1782,2527,1264,2517, result 5 is 3.047E+11
Matrix order= 5, type=18, seed=1782,2527,1264,2517, result 12 is 6.299E+11
ZCHKGG: ZHGEQZ(E) returned INFO= 5.
N= 5, JTYPE= 25, ISEED=( 3168, 107, 464, 497)
Matrix order= 5, type=25, seed=3168, 107, 464, 497, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 6.
N= 10, JTYPE= 17, ISEED=( 1404, 1204, 3270, 1505)
Matrix order= 10, type=17, seed=1404,1204,3270,1505, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 10.
N= 10, JTYPE= 18, ISEED=( 1371, 3123, 235, 497)
Matrix order= 10, type=18, seed=1371,3123, 235, 497, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 8.
N= 10, JTYPE= 19, ISEED=( 1536, 2138, 2686, 689)
Matrix order= 10, type=19, seed=1536,2138,2686, 689, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 8.
N= 10, JTYPE= 20, ISEED=( 2572, 39, 42, 881)
Matrix order= 10, type=20, seed=2572, 39, 42, 881, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 9.
N= 10, JTYPE= 21, ISEED=( 2098, 667, 175, 1073)
Matrix order= 10, type=21, seed=2098, 667, 175,1073, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 3.
N= 10, JTYPE= 23, ISEED=( 345, 1774, 537, 817)
Matrix order= 10, type=23, seed= 345,1774, 537, 817, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(V) returned INFO= 6.
N= 10, JTYPE= 24, ISEED=( 872, 932, 117, 505)
Matrix order= 10, type=24, seed= 872, 932, 117, 505, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 4.
N= 10, JTYPE= 25, ISEED=( 1773, 3203, 76, 257)
Matrix order= 10, type=25, seed=1773,3203, 76, 257, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 7.
N= 16, JTYPE= 17, ISEED=( 2929, 1572, 489, 1721)
Matrix order= 16, type=17, seed=2929,1572, 489,1721, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 13.
N= 16, JTYPE= 18, ISEED=( 421, 3186, 1743, 3241)
Matrix order= 16, type=18, seed= 421,3186,1743,3241, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 12.
N= 16, JTYPE= 19, ISEED=( 236, 1328, 3538, 3241)
Matrix order= 16, type=19, seed= 236,1328,3538,3241, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 8.
N= 16, JTYPE= 20, ISEED=( 3986, 3152, 1237, 3241)
Matrix order= 16, type=20, seed=3986,3152,1237,3241, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 14.
N= 16, JTYPE= 21, ISEED=( 2436, 464, 3032, 3241)
Matrix order= 16, type=21, seed=2436, 464,3032,3241, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(V) returned INFO= 5.
N= 16, JTYPE= 22, ISEED=( 2030, 1917, 1958, 3801)
Matrix order= 16, type=22, seed=2030,1917,1958,3801, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 14.
N= 16, JTYPE= 23, ISEED=( 2612, 2024, 791, 2225)
Matrix order= 16, type=23, seed=2612,2024, 791,2225, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(V) returned INFO= 11.
N= 16, JTYPE= 24, ISEED=( 3197, 3970, 1171, 713)
Matrix order= 16, type=24, seed=3197,3970,1171, 713, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 15.
N= 16, JTYPE= 25, ISEED=( 1991, 2627, 808, 801)
Matrix order= 16, type=25, seed=1991,2627, 808, 801, result 5 is 4.504E+15
Matrix order= 16, type=26, seed= 390,2690,2253,4025, result 5 is 599.35
Matrix order= 16, type=26, seed= 390,2690,2253,4025, result 10 is 401.77
Matrix order= 16, type=26, seed= 390,2690,2253,4025, result 12 is 1615.75
ZGG: 24 out of 2051 tests failed to pass the threshold
*** Error code from ZCHKGG = 15
ZDRVGG: ZGEGS returned INFO= 3.
N= 5, JTYPE= 19, ISEED=( 2466, 3383, 1519, 3197)

ZGG -- Complex Generalized eigenvalue problem driver
Matrix types (see ZDRVGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (S is Schur, T is triangular, Q and Z are unitary,
l and r are the appropriate left and right
eigenvectors, resp., a is alpha, b is beta, and
* means conjugate transpose.)
1 = | A - Q S Z* | / ( |A| n ulp ) 2 = | B - Q T Z* | / ( |B| n ulp )
3 = | I - QQ* | / ( n ulp ) 4 = | I - ZZ* | / ( n ulp )
5 = difference between (alpha,beta) and diagonals of (S,T)
6 = max | ( b A - a B )* l | / const. 7 = max | ( b A - a B ) r | / const.

Matrix order= 5, type=19, seed=2466,3383,1519,3197, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 3.
N= 5, JTYPE= 22, ISEED=( 2709, 2598, 263, 425)
Matrix order= 5, type=22, seed=2709,2598, 263, 425, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 3.
N= 5, JTYPE= 23, ISEED=( 2013, 3277, 1624, 2185)
Matrix order= 5, type=23, seed=2013,3277,1624,2185, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 5.
N= 5, JTYPE= 25, ISEED=( 494, 235, 3426, 585)
Matrix order= 5, type=25, seed= 494, 235,3426, 585, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 9.
N= 10, JTYPE= 17, ISEED=( 3227, 1941, 3856, 2233)
Matrix order= 10, type=17, seed=3227,1941,3856,2233, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 7.
N= 10, JTYPE= 18, ISEED=( 2621, 3577, 2629, 585)
Matrix order= 10, type=18, seed=2621,3577,2629, 585, result 1 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 8.
N= 10, JTYPE= 19, ISEED=( 1898, 501, 2694, 1289)
Matrix order= 10, type=19, seed=1898, 501,2694,1289, result 6 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 3.
N= 10, JTYPE= 20, ISEED=( 929, 1650, 248, 1993)
Matrix order= 10, type=20, seed= 929,1650, 248,1993, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 4.
N= 10, JTYPE= 21, ISEED=( 363, 3556, 3675, 2697)
Matrix order= 10, type=21, seed= 363,3556,3675,2697, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 5.
N= 10, JTYPE= 22, ISEED=( 4009, 3113, 3765, 1601)
Matrix order= 10, type=22, seed=4009,3113,3765,1601, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 10.
N= 10, JTYPE= 23, ISEED=( 1039, 2326, 3672, 393)
Matrix order= 10, type=23, seed=1039,2326,3672, 393, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 9.
N= 10, JTYPE= 24, ISEED=( 1443, 2046, 3430, 273)
Matrix order= 10, type=24, seed=1443,2046,3430, 273, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 9.
N= 10, JTYPE= 25, ISEED=( 1179, 3214, 1518, 1753)
Matrix order= 10, type=25, seed=1179,3214,1518,1753, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 14.
N= 16, JTYPE= 17, ISEED=( 1203, 2225, 3030, 2001)
Matrix order= 16, type=17, seed=1203,2225,3030,2001, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 14.
N= 16, JTYPE= 18, ISEED=( 450, 3502, 944, 65)
Matrix order= 16, type=18, seed= 450,3502, 944, 65, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 5.
N= 16, JTYPE= 19, ISEED=( 1343, 3257, 3131, 65)
Matrix order= 16, type=19, seed=1343,3257,3131, 65, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 11.
N= 16, JTYPE= 20, ISEED=( 2521, 2302, 1222, 65)
Matrix order= 16, type=20, seed=2521,2302,1222, 65, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 4.
N= 16, JTYPE= 21, ISEED=( 2243, 635, 3409, 65)
Matrix order= 16, type=21, seed=2243, 635,3409, 65, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 14.
N= 16, JTYPE= 22, ISEED=( 3860, 2921, 3475, 2801)
Matrix order= 16, type=22, seed=3860,2921,3475,2801, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 11.
N= 16, JTYPE= 23, ISEED=( 3383, 685, 1640, 2825)
Matrix order= 16, type=23, seed=3383, 685,1640,2825, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 13.
N= 16, JTYPE= 24, ISEED=( 15, 1505, 1736, 353)
Matrix order= 16, type=24, seed= 15,1505,1736, 353, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 12.
N= 16, JTYPE= 25, ISEED=( 1433, 821, 3265, 1017)
Matrix order= 16, type=25, seed=1433, 821,3265,1017, result 1 is 4.504E+15
ZGG drivers: 22 out of 1152 tests failed to pass the threshold
*** Error code from ZDRVGG = 12


ZGG: NB = 2, NBMIN = 2, NS = 4, MAXB = 2, NBCOL = 2
ZGG -- Complex Generalized eigenvalue problem
Matrix types (see ZCHKGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (H is Hessenberg, S is Schur, B, T, P are triangular,
U, V, Q, and Z are unitary, l and r are the
appropriate left and right eigenvectors, resp., a is
alpha, b is beta, and * means conjugate transpose.)
1 = | A - U H V* | / ( |A| n ulp ) 2 = | B - U T V* | / ( |B| n ulp )
3 = | I - UU* | / ( n ulp ) 4 = | I - VV* | / ( n ulp )
5 = | H - Q S Z* | / ( |H| n ulp ) 6 = | T - Q P Z* | / ( |T| n ulp )
7 = | I - QQ* | / ( n ulp ) 8 = | I - ZZ* | / ( n ulp )
9 = max | ( b S - a P )* l | / const. 10 = max | ( b H - a T )* l | / const.
11= max | ( b S - a P ) r | / const. 12 = max | ( b H - a T ) r | / const.

Matrix order= 5, type=17, seed=1915,2136,2450, 53, result 5 is 4.391E+13
Matrix order= 5, type=17, seed=1915,2136,2450, 53, result 12 is 8.535E+13
Matrix order= 5, type=20, seed=2617, 913,1978,1125, result 5 is 1.082E+11
Matrix order= 5, type=20, seed=2617, 913,1978,1125, result 12 is 3.135E+11
ZCHKGG: ZHGEQZ(S) returned INFO= 5.
N= 5, JTYPE= 21, ISEED=( 165, 619, 2213, 1749)
Matrix order= 5, type=21, seed= 165, 619,2213,1749, result 5 is 4.504E+15
Matrix order= 5, type=24, seed=1089,1487,3707,2305, result 5 is 5.488E+10
Matrix order= 5, type=24, seed=1089,1487,3707,2305, result 12 is 1.599E+11
ZCHKGG: ZHGEQZ(V) returned INFO= 10.
N= 10, JTYPE= 17, ISEED=( 3292, 365, 1696, 2513)
Matrix order= 10, type=17, seed=3292, 365,1696,2513, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 4.
N= 10, JTYPE= 18, ISEED=( 3242, 785, 571, 1249)
Matrix order= 10, type=18, seed=3242, 785, 571,1249, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 9.
N= 10, JTYPE= 20, ISEED=( 3368, 3418, 440, 3681)
Matrix order= 10, type=20, seed=3368,3418, 440,3681, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 9.
N= 10, JTYPE= 21, ISEED=( 408, 1546, 1797, 801)
Matrix order= 10, type=21, seed= 408,1546,1797, 801, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(V) returned INFO= 10.
N= 10, JTYPE= 22, ISEED=( 3599, 71, 890, 2585)
Matrix order= 10, type=22, seed=3599, 71, 890,2585, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 6.
N= 10, JTYPE= 23, ISEED=( 605, 3553, 432, 545)
Matrix order= 10, type=23, seed= 605,3553, 432, 545, result 5 is 4.504E+15
Matrix order= 10, type=24, seed= 586, 836,3398,1129, result 5 is 2.304E+07
Matrix order= 10, type=24, seed= 586, 836,3398,1129, result 12 is 2.464E+07
ZCHKGG: ZHGEQZ(E) returned INFO= 7.
N= 10, JTYPE= 25, ISEED=( 596, 3619, 2479, 753)
Matrix order= 10, type=25, seed= 596,3619,2479, 753, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 14.
N= 16, JTYPE= 17, ISEED=( 1459, 411, 781, 3369)
Matrix order= 16, type=17, seed=1459, 411, 781,3369, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 14.
N= 16, JTYPE= 18, ISEED=( 3156, 648, 3596, 1049)
Matrix order= 16, type=18, seed=3156, 648,3596,1049, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 10.
N= 16, JTYPE= 19, ISEED=( 3976, 3660, 2783, 1049)
Matrix order= 16, type=19, seed=3976,3660,2783,1049, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 12.
N= 16, JTYPE= 20, ISEED=( 1903, 1121, 1970, 1049)
Matrix order= 16, type=20, seed=1903,1121,1970,1049, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 7.
N= 16, JTYPE= 21, ISEED=( 1858, 1223, 1157, 1049)
Matrix order= 16, type=21, seed=1858,1223,1157,1049, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(V) returned INFO= 16.
N= 16, JTYPE= 22, ISEED=( 644, 2288, 2167, 841)
Matrix order= 16, type=22, seed= 644,2288,2167, 841, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 8.
N= 16, JTYPE= 23, ISEED=( 4082, 643, 1400, 4001)
Matrix order= 16, type=23, seed=4082, 643,1400,4001, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(V) returned INFO= 10.
N= 16, JTYPE= 24, ISEED=( 1083, 2820, 3805, 2105)
Matrix order= 16, type=24, seed=1083,2820,3805,2105, result 5 is 4.504E+15
ZCHKGG: ZHGEQZ(E) returned INFO= 8.
N= 16, JTYPE= 25, ISEED=( 3999, 208, 3981, 785)
Matrix order= 16, type=25, seed=3999, 208,3981, 785, result 5 is 4.504E+15
ZGG: 25 out of 2065 tests failed to pass the threshold
*** Error code from ZCHKGG = 8
ZDRVGG: ZGEGS returned INFO= 3.
N= 5, JTYPE= 17, ISEED=( 752, 1322, 3299, 3565)

ZGG -- Complex Generalized eigenvalue problem driver
Matrix types (see ZDRVGG for details): 
Special Matrices: (J'=transposed Jordan block)
1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J',J') 6=(diag(J',I), diag(I,J'))
Diagonal Matrices: ( D=diag(0,1,2,...) )
7=(D,I) 9=(large*D, small*I) 11=(large*I, small*D) 13=(large*D, large*I)
8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) 14=(small*D, small*I)
15=(D, reversed D)
Matrices Rotated by Random Unitary Matrices U, V:
16=Transposed Jordan Blocks 19=geometric alpha, beta=0,1
17=arithm. alpha&beta 20=arithmetic alpha, beta=0,1
18=clustered alpha, beta=0,1 21=random alpha, beta=0,1
Large & Small Matrices:
22=(large, small) 23=(small,large) 24=(small,small) 25=(large,large)
26=random O(1) matrices.

Tests performed: (S is Schur, T is triangular, Q and Z are unitary,
l and r are the appropriate left and right
eigenvectors, resp., a is alpha, b is beta, and
* means conjugate transpose.)
1 = | A - Q S Z* | / ( |A| n ulp ) 2 = | B - Q T Z* | / ( |B| n ulp )
3 = | I - QQ* | / ( n ulp ) 4 = | I - ZZ* | / ( n ulp )
5 = difference between (alpha,beta) and diagonals of (S,T)
6 = max | ( b A - a B )* l | / const. 7 = max | ( b A - a B ) r | / const.

Matrix order= 5, type=17, seed= 752,1322,3299,3565, result 1 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 4.
N= 5, JTYPE= 18, ISEED=( 1769, 3157, 773, 1981)
Matrix order= 5, type=18, seed=1769,3157, 773,1981, result 6 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 4.
N= 5, JTYPE= 21, ISEED=( 647, 496, 3898, 2957)
Matrix order= 5, type=21, seed= 647, 496,3898,2957, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 10.
N= 10, JTYPE= 17, ISEED=( 2150, 113, 1026, 3881)
Matrix order= 10, type=17, seed=2150, 113,1026,3881, result 1 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 5.
N= 10, JTYPE= 19, ISEED=( 3889, 1749, 1254, 1657)
Matrix order= 10, type=19, seed=3889,1749,1254,1657, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 7.
N= 10, JTYPE= 20, ISEED=( 2138, 442, 909, 3385)
Matrix order= 10, type=20, seed=2138, 442, 909,3385, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 9.
N= 10, JTYPE= 21, ISEED=( 1536, 2768, 3094, 1017)
Matrix order= 10, type=21, seed=1536,2768,3094,1017, result 1 is 4.504E+15
ZDRVGG: ZGEGV returned INFO= 9.
N= 10, JTYPE= 22, ISEED=( 288, 3638, 2347, 1073)
Matrix order= 10, type=22, seed= 288,3638,2347,1073, result 6 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 5.
N= 10, JTYPE= 23, ISEED=( 2111, 180, 299, 2809)
Matrix order= 10, type=23, seed=2111, 180, 299,2809, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 8.
N= 10, JTYPE= 24, ISEED=( 3306, 2399, 2411, 513)
Matrix order= 10, type=24, seed=3306,2399,2411, 513, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 7.
N= 10, JTYPE= 25, ISEED=( 3783, 3802, 326, 2889)
Matrix order= 10, type=25, seed=3783,3802, 326,2889, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 11.
N= 16, JTYPE= 17, ISEED=( 1200, 651, 3244, 3265)
Matrix order= 16, type=17, seed=1200, 651,3244,3265, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 16.
N= 16, JTYPE= 18, ISEED=( 1769, 3903, 3003, 3633)
Matrix order= 16, type=18, seed=1769,3903,3003,3633, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 16.
N= 16, JTYPE= 19, ISEED=( 2389, 3280, 406, 3633)
Matrix order= 16, type=19, seed=2389,3280, 406,3633, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 10.
N= 16, JTYPE= 20, ISEED=( 2972, 1545, 1905, 3633)
Matrix order= 16, type=20, seed=2972,1545,1905,3633, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 12.
N= 16, JTYPE= 21, ISEED=( 2496, 2795, 3404, 3633)
Matrix order= 16, type=21, seed=2496,2795,3404,3633, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 12.
N= 16, JTYPE= 22, ISEED=( 1333, 3890, 2426, 3553)
Matrix order= 16, type=22, seed=1333,3890,2426,3553, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 12.
N= 16, JTYPE= 23, ISEED=( 3578, 2518, 3938, 3193)
Matrix order= 16, type=23, seed=3578,2518,3938,3193, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 13.
N= 16, JTYPE= 24, ISEED=( 3402, 3335, 502, 3409)
Matrix order= 16, type=24, seed=3402,3335, 502,3409, result 1 is 4.504E+15
ZDRVGG: ZGEGS returned INFO= 15.
N= 16, JTYPE= 25, ISEED=( 1265, 1204, 1296, 1641)
Matrix order= 16, type=25, seed=1265,1204,1296,1641, result 1 is 4.504E+15
ZGG drivers: 20 out of 1174 tests failed to pass the threshold
*** Error code from ZDRVGG = 15


End of tests
Total time used = 1.32 seconds
______________________________________________

best regards 
Katrin







_______________________________________________
Beowulf mailing list, Beowulf at beowulf.org
To change your subscription (digest mode or unsubscribe) visit http://www.beowulf.org/mailman/listinfo/beowulf



More information about the Beowulf mailing list