
2 CLUSTERWORLD volume 2 no 11 volume 2 no 11 CLUSTERWORLD 3

CLUSTERWORLD BENCHMARKING PROJECT

How to Measure Up: Contributing to the CWBP
 DOUGLAS EADLINE

Many a cluster conversation takes the following form: “I up-
graded to the new motherboard and now my cluster blows
the doors off everyone else’s in my building.” Being a scien-

tist, I have attempted to quantify the phrase “blows the doors off” for
quite some time. I’m sure those living in Florida this year may have a
whole different take on this phrase, but I believe it came from automo-
bile racing where one car would be going so fast that they would cre-
ate a enough draft to “suck” the doors from the other car. Not being
a fluid dynamics expert, I’m not sure if such an effect is even possible
and thus even possible to quantify. In any case, I also must allow for
the fact that this cluster user may have actually modeled wind tear-
ing doors off of his facility, but my experience tells me it is yet another
worthless performance comparison.

When I have encountered these types of comments I al-
ways ask, politely, if there are any quantitative numbers
to go along with the “door scale.” Usually the answer is no.
And I understand why. Running benchmarks is difficult.
Not only must you be careful with your assumptions, but
getting things to actually work can be a real pain.

e ClusterWorld Benchmarking Project is intended
to help make better quantitative comparisons. We have
discussed the project before (see the e Right Stuff col-
umns in the May and August  ClusterWorld Maga-
zine issues), and have now put a specification in place so
we can move forward with the actual implementation.
As mentioned, benchmarks will be assigned to various
levels of test. A description of these levels is given in
the CWBP Benchmark Levels sidebar (page ).

Mention the Intention
An important point to remember is that the CWBP is
not planning to write the actual benchmarks. ere are
plenty of benchmarks that are freely available (both
codes intended as benchmarks and real applications).
Our job is to collect them and make them easy to use on
clusters.

ere are three types of comparisons for which the
project is designed:

1 Comparing your cluster with your cluster. Although it
sounds silly, this is probably the most important use

of the benchmarks. For example, the
software environment for clusters
is quite dynamic, and the assump-
tion is that new versions of software
are faster than old versions. Without
some way to test the old against the
new, there is no way to know if up-
dates and changes are moving you in
the right direction for your cluster.

2 Helping to design your cluster. As
we know, the range of choices for
cluster components is quite large.
Choosing the right components re-
quires more than a data sheet and
some good words from a sales per-

son. Indeed, the nature of clusters is that not until
the whole system is tested can you be sure that ev-
erything is working correctly. Having a set of tests to
evaluate and help steer the design, procurement and
acceptance process is essential to optimizing your
purchase. Otherwise, you end up guessing.

3 Cluster-to-cluster comparison for the same code and
data set. ese are perhaps the trickiest types of com-
parison, but a user should be able to test the same ap-
plication code on a different cluster and expect the re-
sults to useful.

Astute readers will notice that I have put cluster-to-
cluster comparisons last on the list. I have done this to
de-emphasize the competitive nature of these bench-
marks. Ultimately, some will report that they “blew the
doors off” of a benchmark. At least we will be able to
ask for the numbers.

As an aside, in recent times, I have been accused
of taking on the role of cluster mystic when it comes to
performance questions. If asked by any young cluster
wonk, “How fast is your cluster?” I reply, “When you
can tell me how tall is a building, I will tell you how fast
is my cluster.” at usually gets rid of them and spares
me from providing a long polite explanation as to why
their question is non sequitur — i.e., stupid.

Now that we have declared our intention, let’s talk

2 CLUSTERWORLD volume 2 no 11 volume 2 no 11 CLUSTERWORLD 3

CLUSTERWORLD BENCHMARKING PROJECT

about how we plan on making all this work. And, more
importantly, how you can get involved.

Laziness for Dummies
Having lived a fair portion of my professional life in front
of CRTs, I can say that some of the best programming
practices involve what I like to call the lazy approach. at
is, if it is already done, try not to re-write it, but rather use
it untouched. You can always optimize later if needed. Of
course, this approach often makes the more eloquent cod-
ers among us cringe, but this is my project so we will do
it my way until someone more experienced and eloquent
than I comes along and takes over (hint, hint).

In general, my plan is as follows: to build a frame-
work for which existing benchmarks can be easily add-
ed — without having to recode or modify the bench-
mark application itself. e idea is to have firm lines
between what we do and what the benchmark does. Of
course, if the application authors may want to build in
hooks for the CWBP framework, such a situation would
be ideal. However, I believe a modular, but somewhat
clunky, design may work best in the end (at least it lets
us get started quickly).

e only requirements for the benchmark or appli-
cations used in the framework are that they be open
source and meaningful. ese requirements will ensure
that native compilations will be done for the code on
the test systems and that users will have full responsi-
bility for compilers and compiler options, if allowed. In
addition, the whole process will be open. Not that any-
one ever cheated on a benchmark.

A boundary of sorts will then exist between the ac-
tual tests and the framework that uses them. is feat
will be accomplished with some nice low-tech wrapper
functions. e specification presented here will allows
the CWBP framework to call any benchmark that has
been “suitably wrapped.”

From the user’s standpoint, the benchmarks will
run from a web browser. In addition, results will be cast
in HTML so that they can be easily shared and viewed
by everyone. An overview of the design is shown in Fig-
ure One.

Let’s Wrap
From the Framework standpoint, each benchmark
will need to provide some standard wrapping func-
tions (many of which may already be available from the
benchmark itself) that will assist in making, running,
cleaning, and reporting results. e directory specifica-
tion is shown in the Directory Specifications sidebar (page
). e following wrapping functions must be provided
for each benchmark.

1 A makefile or script. ese wrappers are respon-
sible for building the binaries, this process may call
a configure option as well. Once binaries are built
they are copied into the /run directory.

2 A “make run” makefile option or script. ese
wrappers are responsible for running the binaries.
ey will copy any data that is needed from the /data
directory to the /run directory. Any temporary or
output files will be created in the </run directory.

3 A “make report” makefile option or script.

ese wrappers are responsible for producing an
HTML report (see below) for the run and placing it
in the /report directory. e report will be viewable
from a browser. e report will include the run pa-
rameters as well as the test results.

4. A “make clean” and “make veryclean”

makefile option or script. is script will pro-
vide a “make clean” option that will remove everything

FIGURE ONE: Architecture Overview

Web Browser

User selects, builds,
and runs tests Pristine Benchmark

(no alterations allowed)

CWBP Wrapper Functions

• build
• run
• clean
• report

Tests and
Parameters

HTML
Results

4 CLUSTERWORLD volume 2 no 11

CLUSTERWORLD BENCHMARKING PROJECT

 volume 2 no 11 CLUSTERWORLD 5

CLUSTERWORLD BENCHMARKING PROJECT

in the /run directory and “clean” the benchmark code
directory. A “make veryclean” wrapper will also delete
all reports, and pretty much try to put things back to
the way they were before any tests were run.

5 An Input Parameter File. is file will contain all
the information need to compile, run and verify the
test. See below for more information.

In general, the “real work” will probably be creating
the HTML output from the test results as many appli-
cations and benchmarks have automatic build scripts
or makefiles. e build wrappers will ensure that the
framework can interact with the benchmarks in a con-
sistent fashion. Example wrappers are providedat
cwbp.sourceforge.net.

Also, note that the wrapper functions can be writ-
ten in any language. e user who has taken the time

to build the wrappers will have the prerogative to use
what very language works best — provided it is part of
a standard Linux distribution.

Input Parameter File
In order to manage data for each benchmark, an Input
Parameter File (IPF) will be used. e file will work as
follows. Each submitted test will have a default param-
eter file created by the benchmark submitter (bench-
mark wrapper). e web interface to the CWBP will
parse this file and if allowed provide a field for the user
to change some of the parameters. For instance, com-
pile option flags could be one parameter under user con-
trol. e choice of what the user controls will be up to
the person who prepared the benchmark wrapper. You
will always have the option to go back to the default
settings. It will also be the preparer’s responsibility to
make sure that user parameters are correctly used for
the benchmark run.

e input specification file may vary from bench-
mark to benchmark, but it will at a minimum have the
following fields:

Benchmark Name:
Version Number:
Source of Benchmark:
Benchmark Filename:

Compiler:
Compiler Options:
Requirements:

Binary Name:
Command Line Options:
Output Data File:
Verification File:

FIGURE TWO: Example CWBP Report Page

CWBP Benchmark Levels

Micro-Benchmarks
These types of benchmarks require one or two nodes and
look at very low-level performance features which may
include memory bandwidth, multiprocessor scaling, net-
work speeds, storage speeds, and other single-system tests.

Whole System Benchmarks
At a slightly higher level, a set of systemwide gener-
al benchmarks and tests will provide an sense of how
the cluster is functioning as a whole system. Exam-
ples of these types of benchmarks include NAS Paral-
lel Benchmarks, the HPL benchmark, and some of the
MPI suites that are available.

Application Benchmarks
At this level, real applications will be tested. These
will include representative applications from areas of
bioinformatics, weather forecasting, computational
chemistry, rendering, and others. As stated, these will,
in part, be based on freely available applications.

Workflow Benchmarks
The topmost level will test how well a specific workflow
is handled by the system. This level obviously brings in
the batch scheduling capabilities of the cluster. It requires
a set of applications from level III that may look similar to
the users typical workflow. These applications would be
queued on the cluster and then run to determine how
much work gets done in a specific amount of time.

4 CLUSTERWORLD volume 2 no 11

CLUSTERWORLD BENCHMARKING PROJECT

 volume 2 no 11 CLUSTERWORLD 5

CLUSTERWORLD BENCHMARKING PROJECT

e benchmark name, version, source, and file name
are all needed to track the benchmark. e compiler
may be a user selectable list of compilers known to work
with the benchmark or a single compiler. e same
goes for the compiler options. e requirements field
is a bit trickier. If for example, the benchmark submit-
ter requires that certain software be present or that the
benchmark has only been tested on a specific OS ver-
sion or cluster version (i.e. Scyld, Rocks, etc.), then the
framework will check for these requirements. If the re-
quirements are not satisfied, the benchmark will not
run. e user will be informed of the situation.

e binary name and command line arguments are
used to run the program. Note that any input files for the
program will be moved to the /run directory automatically.

Finally, the output file is the name of the raw output
that will be used for the HTML generation and included
in the report. In this way, all data for the benchmark,
summary HTML report, and detailed results will be im-
mediately available.

e verification field is used if the test can be veri-
fied against a known data set. Obviously, some bench-
marks that measure certain system parameters (like
memory bandwidth) cannot be verified. In this case, the
field will be left blank.

The Report
An example report page is shown in Figure Two (page
). e final version will probably be a little bit differ-
ent, but the available data will essentially be the same.

Of particular note is the Input Parameter File link.
If the benchmark defaults where used, then a link will
show “DEFAULT” and reference the defaults file. If the
user had changed any of the defaults, then the link will
show “USER” and reference the user modified Input Pa-
rameter File. ere is also a link to the raw data as well.

Invitation
By the time you read this, version . of the frame-
work and some example tests will be available from
cwbp.sourceforge.net. Updated project news will also be up
on the website.

It is fully expected that the initial design present-
ed here will undergo changes as the project matures.
erefore, a more detailed specification will be placed
on the website so that the community can post com-
ments and make suggestions. At this point, the design
may need to be enhanced for the level four tests.

New benchmarks can be submitted, but will only be
added after testing by qualified CWBP members. You
are encouraged to become a qualified CWBP member.
We have no T-shirts, but we do have the noble goal of
total cluster benchmark domination.

Which brings us to the request for help. ClusterWorld
Magazine will help with the project as much as possible, It
will not, however, move very fast if we are the sole contrib-
utors. My intention is to solicit help from the community
at large and in particular from those members who have
expertise in many of the important application areas. In
this way, we can add tests quickly and “blow the doors off”
all the other benchmarking efforts out there.

Douglas Eadline is the editor-in-chief of ClusterWorld Maga-
zine. He can be reached at deadline@clusterworld.com.

Directory Specifications

The CWBP framework will need a predicable way
to build and run tests. Those tests and requisite

wrappers need to be placed in the following directory
structure by either a tar file or an rpm. The following
specification applies to all tests.

1 Installation requires a tar file or rpm that extracts
into:

/opt/cwbp/level/name

where level represents the test level (see the CWBP
Benchmark Levels sidebar) and name identifies the
name of the test. The level and name values will
used by the framework to identify the benchmark.

2 The benchmark name directory is constructed as
follows:

/build - includes wrapper functions
/data - includes any data files
/run - a directory where the executable are run
/report - a directory to hold the results
/benchmark - directory that holds the benchmarks
as extracted from original benchmark source. i.e. the
pristine benchmark code.

As mentioned, the /build will have scripts or makefiles
that will allow building, cleaning, running, and report-
ing results. The build scripts will put binaries in the /run
directory. The run scripts will copy any data from the /
data directory to the /run directory and run the code.
The report script will create an HTML report and place it
in the /report directory. A clean script will clean the /
run directory and /benchmark directories.

